
Model Checking Interval Temporal
Logics with Regular ExpressionsI

Laura Bozzellia, Alberto Molinarib, Angelo Montanarib, Adriano Perona

aDepartment of Electronic Engineering and Information Technologies,
University of Napoli “Federico II”, Italy

bDepartment of Mathematics, Computer Science, and Physics, University of Udine, Italy

Abstract

In this paper, we investigate the model checking (MC) problem for Halpern and Shoham’s
modal logic of time intervals (HS) and its fragments, where labelling of intervals is defined by
regular expressions. The MC problem for HS has recently emerged as a viable alternative to
the traditional (point-based) temporal logic MC. Most expressiveness and complexity results
have been obtained by imposing suitable restrictions on interval labeling, namely, by either
defining it in terms of interval endpoints, or by constraining a proposition letter to hold over
an interval if and only if it holds over each component state (homogeneity assumption). In
both cases, the expressiveness of HS gets noticeably limited, in particular when fragments of
HS are considered.

A possible way to increase the expressiveness of interval temporal logic MC was proposed
by Lomuscio and Michaliszyn, who suggested to use regular expressions to define interval
labeling, i.e., the properties that hold true over intervals/computation stretches, based on
their component points/system states. In this paper, we provide a systematic account of
decidability and complexity issues for model checking HS and its fragments extended with
regular expressions. We first prove that MC for (full) HS extended with regular expressions
is decidable by an automaton-theoretic argument. Though the exact complexity of full HS
MC remains an open issue, the complexity of all relevant proper fragments of HS is here
determined. In particular, we provide an asymptotically optimal bound to the complexity
of the two syntactically maximal fragments AABBE and AAEBE, by showing that their MC
problem is AEXPpol-complete (AEXPpol is the complexity class of problems decided by
exponential-time bounded alternating Turing Machines making a polynomially bounded
number of alternations). Moreover, we show that a better result holds for AABB, AAEE and
all their sub-fragments, whose MC problem turns out to be PSPACE-complete.

Keywords: Interval Temporal Logic, Model Checking, Computational Complexity
2010 MSC: 03B70, 68Q60

IThis paper is an extended and revised version of [3] and [4].
Email addresses: lr.bozzelli@gmail.com (Laura Bozzelli), molinari.alberto@gmail.com (Alberto

Molinari), angelo.montanari@uniud.it (Angelo Montanari), adrperon@unina.it (Adriano Peron)

Preprint submitted to Information and Computation January 14, 2019

1. Introduction

Modal and temporal logics are commonly used to express the properties of models of
systems which are to be checked for some expected features, typically, fairness, non-starvation,
state reachability, deadlock freedom, and so on. There exist algorithms which are able to
automatically check temporal logic formulas over models—to ensure that the systems meet the
expected behaviour—searching for possible computations that violate them, i.e., determining
the presence of bugs. This approach is commonly referred to as model checking (MC), which
is recognized as one of the most effective techniques for automatic system verification [2].
MC has been employed also in the context of databases (e.g., active databases, database-
backed web applications, and NoSQL databases) and artificial intelligence (e.g., planning,
configuration systems, and multi-agent systems) [19, 18, 26].

A good balancing of expressiveness and complexity in the choice of the system model
and the specification formalism is a key factor for the effective exploitation of MC. Systems
are usually modeled as finite-state transition graphs (Kripke structures), while properties
are commonly expressed by formulas of the point-based temporal logics LTL, CTL, and
CTL∗ [35, 14]. These logics allow one to predicate properties of system states, and are
traditionally adopted in MC as they are easy to understand and to be used also by non-
experts, and suitable for practical purposes in many application domains.

Various improvements to the computational model and/or the specification language have
been proposed in the literature. As for the former, we mention MC for pushdown systems
(see, e.g., [15]), that feature an infinite state space, while for the latter we recall the extensions
of LTL with promptness, that make it possible to bound the delay with which a liveness
request is fulfilled (see, e.g., [21]). Adding regular expressions is another possible direction,
that allows one to enrich the expressive power of existing logics. It has been investigated, for
instance, in the cases of LTL [22] and CTL [28].

In this paper, we study the MC problem for interval temporal logic (ITL) extended
with regular expressions. ITLs have intervals, and not points, as their primitive temporal
entities [20, 34, 38], thus providing a different means for reasoning about time. As a matter
of fact, ITLs allow one to deal with relevant temporal properties, such as actions with
duration, accomplishments, and temporal aggregations, which are inherently “interval-based”
and cannot be properly expressed by point-based temporal logics. ITLs have been fruitfully
applied in various areas of computer science, including formal verification, computational
linguistics, planning, and multi-agent systems [23, 24, 34]. In the last years, ITL MC has
been proposed as an alternative to the traditional (point-based) temporal logic MC—which
can be recovered as a special case [7, 33].

Among ITLs, the most well-known one is Halpern and Shoham’s modal logic of time
intervals HS [20]. It features one modality for each of the 13 possible binary ordering relations
between pairs of intervals (the so-called Allen’s relations [1]), apart from equality (in fact, the
three Allen’s modalities A (for meets), B (for started-by), and E (for finished-by), together with
the three modalities A, B, and E for the inverse relations, suffice for expressing the entire set of
relations). Its satisfiability problem is undecidable over all relevant classes of linear orders [20],
and most of its fragments are undecidable as well [10, 27]. Some meaningful exceptions are

2

Table 1: Complexity of MC for HS and its fragments (†local MC).
Homogeneity [29] Regular expressions Endpoints [23, 24, 25]

Full HS, BE
non-elementary non-elementary BE+KC†: PSPACE

EXPSPACE-hard EXPSPACE-hard BE†: P

AABBE,AAEBE
∈ EXPSPACE ∈ AEXPpol non-elem. PSPACE-hard

PSPACE-hard AEXPpol-complete

AABE PSPACE-complete
∈ AEXPpol

PSPACE-hard

AABB,BB,B,
PSPACE-complete PSPACE-complete AB+KC: non-elem.

AAEE,EE,E

AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A
∈ PNP[O(log2 n)]

PSPACE-complete
PNP[O(logn)]-hard

Prop,B,E co-NP-complete PSPACE-complete

the logic of temporal neighbourhood AA and the logic of sub-intervals D [12, 11].
The MC problem for HS and its fragments consists in the verification of the correctness of

the behaviour of a given system with respect to some relevant interval properties. To make it
effective, we need to collect information about states into computation stretches: we interpret
each finite computation path as an interval, and we define its labelling on the basis of the
labelling of the states that compose it. Most results have been obtained by imposing suitable
restrictions on interval labeling: either by constraining a proposition letter to hold over an
interval if and only if it holds over each component state (homogeneity assumption [36]), or
by defining interval labeling in terms of interval endpoints.

In [29], Molinari et al. deal with MC for full HS over finite Kripke structures, under the
homogeneity assumption, according to a state-based semantics that allows branching in the
past and in the future. They introduce the fundamental elements of the problem and prove
its non-elementary decidability and PSPACE-hardness. Since then, the attention was also
brought to the fragments of HS, which, similarly to what happens with satisfiability, are
often computationally much better [30, 31, 6, 8, 29, 32]. The summary of these results is
depicted in the second column of Table 1 (the first column reports the fragments of HS
denoted by the list of the featured modalities). The complexity classes shown in red represent
new (upper/lower) bounds to the complexity of the problem deriving from the results of
this paper, while the other classes (in black) are known bounds. Only few, hard issues are
left open in this picture, mostly regarding the precise complexity of the full logic and its
maximal fragments. A comparison of alternative semantics, that is, state-based, trace-based,
and computation-tree-based semantics, together with an expressiveness comparison with
standard point-based temporal logics LTL, CTL, and CTL∗ can be found in [7].

Different assumptions have been done by Lomuscio and Michaliszyn in [23, 24] for some
HS fragments extended with epistemic operators (KC). They assume a computation-tree-

3

based semantics (formulae are interpreted over the unwinding of the Kripke structure) and
interval labeling takes into account only the endpoints of intervals. The different semantic
assumptions prevent a direct comparison with the former approach. The decidability status
of MC for full epistemic HS is still unknown. A summary of the results by Lomuscio and
Michaliszyn is depicted in the last column of Table 1.

The first meaningful attempt to relax the homogeneity assumption can be found in [25],
where Lomuscio and Michaliszyn propose to use regular expressions to define the labeling of
proposition letters over intervals in terms of the component states (notice that homogeneity
can be trivially encoded by regular expressions). In that work the authors prove the
decidability of MC with regular expressions for some very restricted fragments of epistemic
HS, giving some rough upper bounds to its computational complexity.

In this paper, we give a detailed picture of decidability and complexity for HS with regular
expressions, which was still missing. The results are summarized in the third column of
Table 1. It is interesting to compare the complexity of MC for HS fragments extended with
regular expressions with the same fragments under the homogeneity assumption. The rich
spectrum of complexities for the less expressive fragments of HS under homogeneity (last
four rows in the table) collapses to PSPACE-completeness in the case of the corresponding
fragments with regular expressions, witnessing that using regular expressions increases the
expressive power of (syntactically) small fragments of HS. Whether or not there exists an
elementary algorithm for full HS remains an open issue, just like in the case of full HS under
homogeneity. The main results of the paper are summarized in the following short account
of the contents of the next sections.

In Section 2, we introduce the logic HS, along with some background knowledge. Then, in
Section 3, we summarize known complexity results about MC for HS and its fragments. Next,
in Section 4, we prove that MC for full HS extended with regular expressions, under the
state-based semantics, is decidable, by exploiting an automaton-theoretic technique. Then,
in Section 5, we study the problem of MC for the two syntactically maximal (symmetric)
fragments AABBE and AAEBE with regular expressions, proving that it is AEXPpol-complete
(AEXPpol denotes the complexity class of problems decided by exponential-time bounded
alternating Turing Machines with a polynomially bounded number of alternations). Such
a class captures the exact complexity of some relevant problems [9, 16], like, for instance,
the first-order theory of real addition with order [16]. Finally, in Section 6, we show that
formulas of a large class of HS fragments, i.e., those featuring (any subset of) HS modalities
for the Allen’s relations meets, met-by, started-by, and starts (AABB), can be checked in
polynomial working space (MC for all these is PSPACE-complete). Conclusions provide an
assessment of the work done, and outline future research directions.

2. Preliminaries

In this section, we introduce the interval logic HS together with some notation and
background knowledge about Kripke structures, regular expressions, and finite state automata.

Let N be the set of natural numbers. For all i, j ∈ N, we denote by [i, j], with i ≤ j, the
set of naturals h such that i ≤ h ≤ j.

4

s0
p

s1
q

Figure 1: The Kripke structure K2

Let Σ be an alphabet, w be a non-empty finite word over Σ, and ε be the empty word.
We denote by |w| the length of w. For all 1 ≤ i ≤ j ≤ |w|, w(i) represents the i-th letter of w
(i is called a w-position), while w(i, j) is the finite subword of w given by w(i) · · ·w(j). Let
|w| = n. We define fst(w) = w(1) and lst(w) = w(n). The sets of all proper prefixes (resp.,
suffixes) of w is Pref(w) = {w(1, i) | 1 ≤ i ≤ n− 1} (resp., Suff(w) = {w(i, n) | 2 ≤ i ≤ n}).
For i ∈ [1, n], wi is a shorthand for w(1, i). The concatenation of two words w and w′ is
denoted as usual by w · w′. Moreover, if lst(w) = fst(w′), w ? w′ stands for w(1, n− 1) · w′.

For all h, n ≥ 0, let Tower(h, n) denote a tower of exponentials of height h and argument
n, that is, Tower(0, n) = n and Tower(h + 1, n) = 2Tower(h,n). Moreover, let h-EXPTIME
denote the class of languages decided by deterministic Turing machines whose number of
computation steps is bounded by functions of n in O(Tower(h, nc)), for some constant c ≥ 1.
Note that 0-EXPTIME is P.

2.1. Kripke structures, regular expressions, and finite automata
Finite state systems are usually modelled as finite Kripke structures. Let AP be a finite

set of proposition letters, which represent predicates over the states of the considered system.

Definition 1 (Kripke structure). A Kripke structure is a tuple K = (AP , S, R, µ, s0), where
S is a set of states, R ⊆ S × S is a left-total transition relation, µ : S 7→ 2AP is a total
labelling function assigning to each state s the set of proposition letters that hold over it,
and s0 ∈ S is the initial state. For s ∈ S, the set R(s) of successors of s is the non-empty set
of states s′ such that (s, s′) ∈ R. We say that K is finite if S is finite.

Figure 1 depicts a finite Kripke structure K2 = ({p, q}, {s0, s1},R, µ, s0), where R =
{(si, sj) | i, j = 0, 1}, µ(s0) = {p}, µ(s1) = {q}. The initial state s0 is marked by a double
circle.

Let K = (AP , S,R, µ, s0) be a Kripke structure. A trace of K is a non-empty finite word
ρ over S such that (ρ(i), ρ(i+ 1)) ∈ R for i ∈ [1, |ρ| − 1]. A trace is initial if it starts from
s0. We denote by TrcK the infinite set of traces of K . A trace ρ induces a labeling sequence,
namely, the finite word µ(ρ) over 2AP given by µ(ρ(1)) . . . µ(ρ(n)), with n = |ρ|.

Let us now recall the notion of regular expressions over finite words. Since we are
interested in expressing requirements over the labeling sequences induced by traces — i.e.,
finite words over 2AP—here we consider proposition-based regular expressions (denoted as
REs), where atomic expressions are propositional formulas over AP—instead of letters over
an alphabet. Formally, the set of REs r over AP is defined by the grammar:

r ::= ε | φ | r ∪ r | r · r | r∗,

where φ is a propositional formula over AP . The length |r| of an RE r is the number of
subexpressions of r. An RE r denotes a language L(r) of finite words over 2AP defined as:

5

• L(ε) = {ε},

• L(φ) = {A ∈ 2AP | A satisfies φ},

• L(r1 ∪ r2) = L(r1) ∪ L(r2),

• L(r1 · r2) = L(r1) · L(r2), and

• L(r∗) = (L(r))∗.

By well-known results, the class of RE over AP captures the class of regular languages of
finite words over 2AP .

Example 2. An example of RE is r1 = (p ∧ s) · s∗ · (p ∧ s) that intuitively denotes the set
of finite words where both p and s hold true on the endpoints, and s continuously holds in
all internal symbols/sets of 2AP . The RE r2 = (¬p)∗ denotes the set of finite words such that
p does not hold in any position.

We also recall the standard notion of non-deterministic finite state automaton (NFA),
which is a tuple A = (Σ, Q,Q0,∆, F), where Σ is a finite alphabet, Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, ∆ : Q×Σ 7→ 2Q is the transition function (or, equivalently,
∆ ⊆ Q × Σ × Q), and F ⊆ Q is the set of accepting states. An NFA A is complete if, for
all (q, σ) ∈ Q× Σ, ∆(q, σ) 6= ∅. Given a finite word w over Σ, with |w| = n, and two states
q, q′ ∈ Q, a run (or computation) of A from q to q′ over w is a finite sequence of states
q1, . . . , qn+1 such that q1 = q, qn+1 = q′, and qi+1 ∈ ∆(qi, w(i)) for all i ∈ [1, n]. The language
L(A) accepted by A consists of the finite words w over Σ such that there is a run over w
from some initial state to some accepting state.

A deterministic finite state automaton (DFA) is an NFA D = (Σ, Q,Q0,∆, F) such that
Q0 is a singleton, and for all (q, c) ∈ Q× Σ, ∆(q, c) is a singleton. In the following, in the
case of a DFA, we will denote the transition function ∆ as δ.

Remark 3. By well-known results, given an RE r over AP , one can construct, in a compositional
way, an NFA Ar with alphabet 2AP , whose number of states is at most 2|r|, such that
L(Ar) = L(r). We call Ar the canonical NFA associated with r.

Note that, though the number of edges of Ar may be exponential in |AP | (edges are
labelled by assignments A ∈ 2AP satisfying propositional formulas φ of r), we can avoid to
explicitly store edges, as they can be recovered in polynomial time from r. In Figure 2, we
depict the canonical NFA Ar1 associated with the RE r1 of Example 2. We can avoid storing
the edges of Ar1 by remembering which propositional formulas of r1 they are associated with.

2.2. The interval temporal logic HS
An interval algebra to reason about intervals and their relative order was proposed by

Allen in [1], while a systematic logical study of interval representation and reasoning was
done a few years later by Halpern and Shoham, who introduced the interval temporal logic
HS featuring one modality for each Allen relation, but equality [20]. Table 2 depicts 6 of the

6

q0 q1 q2

Ar1

(p ∧ s)

s

(p ∧ s)

Figure 2: The canonical NFA Ar1 associated with the regular expression r1 of Example 2.

Table 2: Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB[v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE[v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

13 Allen’s relations, together with the corresponding HS (existential) modalities. The other
7 relations are the 6 inverse relations (the inverse R of a binary relation R is such that bR a
if and only if aR b) and equality. If 〈X〉 is the modality for R , 〈X〉 is the modality for R .

Let Pu be a finite set of uninterpreted interval properties. The HS language over Pu
consists of proposition letters from Pu, the Boolean connectives ¬ and ∧, and a temporal
modality for each of the (non trivial) Allen’s relations, i.e., 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉,
〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉. HS formulas are defined by the grammar

ψ ::= pu | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ,

where pu ∈ Pu and X ∈ {A,L,B,E,D,O}. We will also use the other standard connectives
(disjunction ∨ and implication →). Moreover, for any modality X, the dual universal
modalities [X]ψ and [X]ψ are defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ, respectively.

Given any subset of Allen’s relations {X1, . . . , Xn}, we denote by X1 · · ·Xn the HS fragment
that features existential (and universal) modalities for X1, . . . , Xn only.

W.l.o.g., we assume the non-strict semantics of HS, which admits intervals consisting
of a single point.1 Under such an assumption, all HS modalities can be expressed in terms
of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [38]. As an example, modality 〈A〉 can be expressed in
terms of 〈E〉 and 〈B〉 as follows: 〈A〉ϕ := ([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)).
We observe that [E]⊥ is true only on point-intervals, requiring that no suffix of the current
interval exists. HS can thus be viewed as a multi-modal logic with 4 primitive modalities.
However, since in the following we will focus on some HS fragments which do not feature

1All the results we prove in the paper hold for the strict semantics as well.

7

(some of) 〈B〉, 〈B〉, 〈E〉, and 〈E〉, we explicitly add both 〈A〉 and 〈A〉 to the considered set
of modalities.

In [29], the authors investigate the MC problem over finite Kripke structures K for HS
formulas where intervals correspond to the traces of K . The approach followed there is subject
to two restrictions: (i) the set Pu of HS proposition letters and the set AP of proposition
letters for the Kripke structure coincide, and (ii) a proposition letter holds over an interval if
and only if it holds over all its sub-intervals (homogeneity assumption). Here, we adopt a
more general and expressive approach according to which an abstract interval proposition
letter pu ∈ Pu denotes a regular language of finite words over 2AP . More specifically, every
pu is a (proposition-based) regular expression over AP . Thus, hereafter, an HS formula ϕ
over AP is an HS formula whose interval proposition letters (or atomic formulas) are REs r
over AP . For this reason, we define the size (or length) |ϕ| of ϕ as the number of non-atomic
subformulas of ϕ plus

∑
r∈spec |r| , where spec is the set of REs occurring in ϕ.

Given a Kripke structure K = (AP , S,R, µ, s0), a trace ρ of K , and an HS formula ϕ over
AP , the satisfaction relation K , ρ |= ϕ is inductively defined as follows (we omit the standard
clauses for Boolean connectives):

• K , ρ |= r if and only if µ(ρ) ∈ L(r) for each RE r over AP ,

• K , ρ |= 〈B〉ϕ if and only if there exists ρ′ ∈ Pref(ρ) such that K , ρ′ |= ϕ,

• K , ρ |= 〈E〉ϕ if and only if there exists ρ′ ∈ Suff(ρ) such that K , ρ′ |= ϕ,

• K , ρ |= 〈B〉ϕ if and only if K , ρ′ |= ϕ for some trace ρ′ such that ρ ∈ Pref(ρ′),

• K , ρ |= 〈E〉ϕ if and only if K , ρ′ |= ϕ for some trace ρ′ such that ρ ∈ Suff(ρ′).

K is a model of ϕ, denoted as K |= ϕ, if for all initial traces ρ of K , it holds that K , ρ |= ϕ.
The MC problem for HS is the problem of checking, for a finite Kripke structure K and an
HS formula ϕ, whether or not K |= ϕ. The problem is not trivially decidable since the set
TrcK of traces of K is infinite.

Note that the considered state-based semantics provides a branching-time setting both in
the past and in the future. In particular, while the modalities for B and E are linear-time
(as they allow us to select prefixes and suffixes of the current trace only), the modalities for
A and B (respectively, A and E) are branching-time in the future (respectively, in the past)
since they enable us to nondeterministically extend a trace in the future (respectively, in the
past). As shown in [7], for the considered semantics, the logics HS and CTL∗ are expressively
incomparable already under the homogeneity assumption. However, under the homogeneity
assumption, the use of the past branching-time modalities A and E is necessary for capturing
requirements which cannot be expressed in CTL∗. For instance, the constraint “each state
reachable from the initial one where p holds has a predecessor where p holds as well ” cannot
be expressed in CTL∗, but can be easily stated in the fragment AE [7]. Conversely, in the
more expressive setting based on regular expressions, the future branching-time modalities A
and B are already sufficient for capturing requirements which cannot be expressed in CTL∗,
such as the following branching-time bounded response property: “for each state, reachable

8

s0
p, pst

s1
p

s2
p, pend

Figure 3: Kripke structure representing a printer

from the initial one, where a request req occurs, there is a computation, starting from this
state, such that the request is followed by a response res after an even number of steps”. This
requirement can be expressed in the fragment AB as follows: [A](req→ 〈B〉(req ·(>·>)∗ ·res)).
Notice that it says nothing about the possible occurrence of a response res after an odd
number of steps.

Example 4 (Adapted from [25]). With this (toy) example we want to compare the effec-
tiveness of regular expressions as rules for defining interval labelling, to homogeneity and to
endpoint-based labelling.

In Figure 3, a Kripke structure representing a printer is shown. In s0 the printer starts
printing a sheet; in s1 the process is ongoing, and it ends in s2. The printer then prints the
subsequent sheet, by “moving” back to s0.

Imagine we want to label the process of printing a single sheet by p (i.e., only the trace
s0s1s2). Under homogeneity, if s0s1s2 is labeled by p, then s0, s1, s2, s0s1, s1s2 must be all
labeled by p as well, against our idea. In the endpoint-based approach [23, 24], in order for
p to label s0s1s2, p must also label all traces (s0s1s2)

n for n ∈ N+, as the endpoints of all
these are s0, s2. Thus “several, consecutive sheets” are labelled p.

Conversely, we can just write the proposition-based RE pst · (¬pend ∧ ¬pst)
∗ · pend to

capture precisely the trace s0s1s2.

3. The General Picture

In this section, we give a short account of research on MC for HS and its fragments, and
we enlighten the original contributions of the present paper (we refer the reader again to
Table 1).

Let us consider first the MC problem for HS and its fragments, under the homogeneity
assumption, according to a state-based semantics [7]. We preliminarily notice that in our
setting it is easy to force homogeneity by simply imposing that all regular expressions in the
formula have the form p · p∗, for some p ∈ AP .

In [29], Molinari et al. provide a MC algorithm for (full) HS, with non-elementary
complexity, that, given a finite Kripke structure K and a bound k on the nesting depth of
〈E〉 and 〈B〉 modalities in the input HS formula, exploits a finite and satisfiability-equivalent
representation for the infinite set TrcK , that accounts for K and k. EXPSPACE-hardness
of MC for BE, and thus for full HS, has been shown in [6]. An EXPSPACE MC algorithm
for the fragments AABBE and AAEBE has been devised in [31]: for any trace of K , it finds a
satisfiability-preserving trace of bounded length (trace representative). In this way, the MC
algorithm only needs to check traces with a bounded maximum length. PSPACE-hardness

9

of MC for AABBE and AAEBE has been proved in [30]. A number of well-behaved HS
fragments, which are still expressive enough to capture meaningful interval properties of
state transition systems, and whose MC problem has a computational complexity markedly
lower than that of full HS, have been identified in [6, 8, 30, 32]. In particular, MC has been
proved to be (i) PSPACE-complete for AABE, AABB, AAEE, B, and E, (ii) PNP-complete
for AB, AAB, AE, and AAE, (iii) in between PNP[O(logn)] and PNP[O(log2 n)] [37] for AA, A, A,
AB, and AE, and (iv) co-NP-complete for B, E, and the pure propositional fragment Prop.

In [23, 24], Lomuscio and Michaliszyn investigate MC for some HS fragments extended
with the epistemic modalities K and C, according to a computation-tree-based semantics [7],
under the assumption that interval labeling is defined by interval endpoints only. They
prove that local MC for BE+KC is PSPACE-complete (it is in P for BE), and they give a
non-elementary upper bound to the complexity of MC for AB+KC. Notice that labeling of
intervals by endpoints can be easily captured in our setting by regular expressions having
the form: ⋃

(i,j)∈I

(qi · >∗ · qj) ∪
⋃
i∈I′

qi,

for some suitable sets of indexes I ⊆ {1, . . . , |S|}2 and I ′ ⊆ {1, . . . , |S|}, where qi ∈ AP is a
letter labeling the state si ∈ S of K , only.

Later [25], Lomuscio and Michaliszyn propose an alternative definition of interval labeling
for the two fragments, which associates a regular expression over the set of states of the Kripke
structure with each proposition letter, that leads to a significant increase in expressiveness—as
the labeling of an interval is no more determined by its endpoints, but it depends on the
ordered sequence of states the interval consists of—at no extra computational cost. No result
is presented about MC for full HS (with or without K, C).

In this paper, we define interval labeling via regular expressions in a way that can be
shown to be equivalent to that of [25]. We first show, in Section 4, that MC for (full)
HS extended with regular expressions (under the state-based semantics) is decidable, by
exploiting an automata-theoretic approach and the notion of K -NFA, a particular version of
NFA. Moreover, the problem can be shown to be in P when it is restricted to system models
assuming the formula to be of constant length.

Then, in Section 5, we study the problems of MC for the two (syntactically) maximal
(symmetric) fragments AABBE and AAEBE with regular expressions, proving that both
problems are AEXPpol-complete. First, we note that settling the exact complexity of these
fragments under the homogeneity assumption—which can be encoded by regular expressions—
is a difficult open question [31]. Moreover, considering that AEXPpol ⊆ EXPSPACE and
that HS under homogeneity is subsumed by HS with regular expressions, the results proved
in this paper improve the upper bounds for the fragments AABBE and AAEBE given in [31].
More in detail, we preliminarily establish an exponential small-model property for AABBE
(Section 5.1): for each interval, it is possible to find an interval of bounded exponential length
that is indistinguishable with respect to the fulfillment of AABBE formulas (respectively,
AAEBE formulas). Such a property allows us to devise an MC procedure belonging to the class
AEXPpol (Section 5.2). Finally, the matching lower bounds are obtained by polynomial-time

10

reductions from the so-called alternating multi-tiling problem, showing that they already
hold for the fragments BE and EB of AABBE and AAEBE, respectively (Section 5.3).

Finally, in Section 6, we show that formulas of HS fragments featuring (any subset of)
HS modalities for the Allen’s relations meets, met-by, started-by, and starts (AABB) can be
checked in polynomial working space (MC for all these is PSPACE-complete). In particular,
in Section 6.1 we prove a small-model theorem for the fragment AABB (and the symmetric
fragment AAEE), which is then exploited in Sections 6.2 and 6.3 to devise a PSPACE
MC algorithm for AABB (and AAEE). Moreover, in Section 6.3, we prove that MC for the
purely propositional fragment of HS, denoted as Prop, is hard for PSPACE, which is enough
to conclude that MC for any sub-fragment of AABB or AAEE is complete for PSPACE.
Hence, relaxing the homogeneity assumption via regular expressions comes at no cost for
AABB, AAEE, BB, EE, B, and E—that remain in PSPACE—while AAB and AAE and their
sub-fragments increase their complexity to PSPACE (see Table 1 once more).

The listed results allow us to outline a correspondence with the previously mentioned
complexity results in [25] for the fragment BE+KC under the computation-tree-based
semantics. Notice that the computation-tree-based semantics and the state-based one behave
exactly in the same way when HS is restricted to fragments featuring present and future
modalities only2. From the PSPACE-completeness of AABB, it immediately follows the
PSPACE membership of AB with regular expressions, devoid of epistemic operators (in fact,
the non-elementary complexity of MC for AB in [25] can be hardly ascribed to the addition
of epistemic operators).

4. MC for Full HS

In this section, we develop an automata-theoretic approach to the MC problem for full
HS with regular expressions. Given a finite Kripke structure K = (AP , S,R, µ, s0) and an
HS formula ϕ over AP , we compositionally construct an NFA over the set of states S of
K accepting the set of traces ρ of K such that K , ρ |= ϕ. The size of the resulting NFA
is nonelementary, but it is just linear in the size of K . To prove that the nonelementary
blow-up does not depend on K , we introduce a special subclass of NFAs, called K -NFA, which
intuitively represents the “synchronization” of an NFA with the Kripke structure K . In this
way, a K -NFA may only accept traces of K .

Definition 5 (K -NFA). A K -NFA is an NFA A = (S,Q,Q0, δ, F) over S satisfying the
following conditions: (i) the set Q of states has the form M × S (M is called the main
component or the set of main states); (ii) Q0 ∩ F = ∅, that is, the empty word ε is not
accepted; (iii) for all (q, s) ∈ M × S and s′ ∈ S, we have δ((q, s), s′) = ∅ if s′ 6= s, and
δ((q, s), s) ⊆M × R(s).

It is worth noticing that, for all words ρ ∈ S+, if there is a run of the K -NFA over ρ, then
ρ is a trace of K . In the following, we construct a K -NFA A accepting the traces ρ of K such
that K , ρ |= ϕ.

2As shown in [7], this is not the case in general: the computation-tree-based semantics of [23, 24, 25] is
subsumed by the state-based one of [29] and follow-up papers.

11

In a standard automata-theoretic approach, an automaton accepting the set of models of
ϕ would be first defined, and then intersected with K . In the following construction, the
synchronization with K is instead implicitly associated with the construction of the K -NFA
itself. Such a choice is motivated by the fact that proposition letters in the formula ϕ (the
base case in the construction) are regular expressions which have to be synchronized with the
traces of K . Such a synchronization is then maintained along the whole process of K -NFA
construction.

The recursive step for dealing with negation in ϕ is noteworthy, since it is not just a
pure complementation of the K -NFA under construction. As a matter of fact, only the
synchronized NFA-component (for the regular expressions of ϕ) has to be complemented,
whereas the synchronized K -component does not. For this reason, the size of the final K -NFA
is nonelementary, but it is linear in the size of K .

In order to prove the main result of the section (stated in Theorem 9), we preliminarily
describe the composition steps to build the required K -NFA. In particular, (i) in Proposi-
tion 6 we give the basic step to deal with propositions associated with regular expressions,
(ii) in Proposition 7 the closure of K -NFAs under language operations corresponding to HS
modalities, and (iii) in Proposition 8 the closure K -NFAs under Boolean operations.

In the following, let K = (AP , S,R, µ, s0) be a finite Kripke structure over AP .

Proposition 6. Let A be an NFA over 2AP with n states. One can construct, in polynomial
time, a K -NFA AK with at most n+ 1 main states accepting the set of traces ρ of K such
that µ(ρ) ∈ L(A).

Proof. Let A = (2AP , Q,Q0, δ, F). By using an additional state, we can assume ε /∈ L(A),
that is, Q0 ∩ F = ∅. Then, AK = (S,Q× S,Q0 × S, δ′, F × S), where for all (q, s) ∈ Q× S
and s′ ∈ S, it holds that δ′((q, s), s′) = ∅ if s′ 6= s, and δ′((q, s), s) = δ(q, µ(s))× R(s). Since
R(s) 6= ∅ for all s ∈ S, the thesis follows.

We now define the operations on languages of finite words over S corresponding to the
HS modalities 〈B〉, 〈B〉, 〈E〉, and 〈E〉. Given a language L over S, we define the following
languages of traces of K :

• 〈B〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ L ∩ S+ and ρ′′ ∈ S+ such that ρ = ρ′ · ρ′′};

• 〈B〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ S+ such that ρ · ρ′ ∈ L ∩ TrcK };

• 〈E〉K (L) = {ρ ∈ TrcK | ∃ ρ′′ ∈ L ∩ S+ and ρ′ ∈ S+ such that ρ = ρ′ · ρ′′};

• 〈E〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ S+ such that ρ′ · ρ ∈ L ∩ TrcK }.
We show that K -NFAs are closed under the above-defined language operations 〈B〉K (·),

〈E〉K (·), 〈B〉K (·), and 〈E〉K (·).
Proposition 7. Given a K -NFA A with n main states, one can construct, in polynomial
time, K -NFAs with n + 1 main states accepting the languages 〈B〉K (L(A)), 〈E〉K (L(A)),
〈B〉K (L(A)), and 〈E〉K (L(A)), respectively.

Proof. Let A = (S,M × S,Q0, δ, F), where M is the set of main states.
12

Language 〈B〉K (L(A)). Let A〈B〉 be the NFA over S given by A〈B〉 = (S, (M ∪ {qacc}) ×
S,Q0, δ

′, {qacc}×S), where qacc /∈M is a fresh main state, and for all (q, s) ∈ (M ∪{qacc})×S
and s′ ∈ S, we have δ′((q, s), s′) = ∅, if s′ 6= s, and δ′((q, s), s) is defined as follows:

δ′((q, s), s) =


δ((q, s), s) if (q, s) ∈ (M × S) \ F
δ((q, s), s) ∪ ({qacc} × R(s)) if (q, s) ∈ F
{qacc} × R(s) if q = qacc.

Given an input word ρ, from an initial state (q0, s) of A, the automaton A〈B〉 simulates the
behavior of A from (q0, s) over ρ. When A is in an accepting state (qf , s) and the current
input symbol is s, A〈B〉 can additionally choose to move to a state in {qacc} × R(s), which is
accepting for A〈B〉 (a prefix of ρ belongs to L(A)). From such states, A〈B〉 accepts if and
only if the remaining part of the input is a trace of K . Since A is a K -NFA, A〈B〉 is a K -NFA
by construction. Moreover, a word ρ over S is accepted by A〈B〉 if and only if ρ is a trace
of K having some proper prefix ρ′ in L(A) (note that ρ′ 6= ε since A is a K -NFA). Thus,
L(A〈B〉) = 〈B〉K (L(A)).

Language 〈B〉K (L(A)). Let A〈B〉 be the NFA over S given by A〈B〉 = (S, (M∪{q′0})×S, {q′0}×
S, δ′, F ′), where q′0 /∈M is a fresh main state and δ′ and F ′ are defined as follows: (i) for all
(q, s) ∈ (M ∪ {q′0})× S and s′ ∈ S, we have δ′((q, s), s′) = ∅, if s′ 6= s, and

δ′((q, s), s) =


⋃

(q0,s)∈Q0

δ((q0, s), s) if q = q′0

δ((q, s), s) otherwise.

(ii) The set F ′ of accepting states is the set of states (q, s) of A such that there exists a run
of A from (q, s) to some state in F over some non-empty word. Note that the set F ′ can
be computed in time polynomial in the size of A. By construction, we have that A〈B〉 is
a K -NFA and A〈B〉 accepts a word ρ if and only if ρ is a non-empty proper prefix of some
word accepted by A, implying that L(A〈B〉) = 〈B〉K (L(A)).

The constructions for 〈E〉K (L(A)) and 〈E〉K (L(A))—which are symmetric with respect
to 〈B〉K (L(A)) and 〈B〉K (L(A))—can be found in Appendix A.1.

Now we show that K -NFAs are closed under Boolean operations.

Proposition 8. Given two K -NFAs A and A′ with n and n′ main states, respectively, one
can construct:

• a K -NFA with n+ n′ main states accepting L(A) ∪ L(A′), in time O(n+ n′);

• a K -NFA with 2n+1 + 1 main states accepting TrcK \L(A), in time 2O(n).

Proof. The construction for union is standard and thus omitted. The construction for
complementation follows.

13

Let A = (S,M × S,Q0, δ, F). First, we need a preliminary construction. Let us consider
the NFA A′′ = (S, (M ∪ {qacc})× S,Q0, δ

′′, {qacc} × S), where qacc /∈M is a fresh main state,
and for all (q, s) ∈ (M ∪ {qacc})× S and s′ ∈ s, we have δ′′((q, s), s′) = ∅, if s′ 6= s, and

δ′′((q, s), s) =


δ((q, s), s) ∪ ({qacc} × S) if q ∈M and δ((q, s), s) ∩ F 6= ∅
δ((q, s), s) if q ∈M and δ((q, s), s) ∩ F = ∅
∅ if q = qacc.

Note that L(A′′) = L(A), but A′′ is actually not a K -NFA.
Next, we show that it is possible to construct in time 2O(n) a weak K -NFA Ac with 2n+1

main states accepting (TrcK \L(A′′))∪{ε}, where a weak K -NFA is just a K -NFA without the
requirement that the empty word ε is not accepted. Thus, since a weak K -NFA can be easily
converted into an equivalent K -NFA by using an additional main state, and L(A′′) = L(A),
the result follows. The weak K -NFA Ac is given by Ac = (S, 2M̃ × S,Q0,c, δc, Fc), where
M̃ = M ∪ {qacc}, and Q0,c, Fc and δc are defined as follows:

• Q0,c = {(P, s) ∈ 2M × S | P = {q ∈M | (q, s) ∈ Q0}};

• Fc = {(P, s) ∈ 2M × S};

• for all (P, s) ∈ 2M̃ × S and s′ ∈ S, we have δc((P, s), s′) = ∅, if s′ 6= s, and

δc((P, s), s) =
⋃

s′∈R(s)

{
({q′ ∈ M̃ | (q′, s′) ∈

⋃
p∈P

δ′′(p, s)}, s′)
}
.

By construction, Ac is a weak K -NFA not accepting words in S+ \TrcK . Since Q0,c ⊆ Fc, we
have ε ∈ L(Ac). Let ρ ∈ TrcK with |ρ| = k. To conclude the proof, we have to show that
ρ ∈ L(A′′) if and only if ρ /∈ L(Ac).

Assuming that ρ ∈ L(A′′), we prove by contradiction that ρ /∈ L(Ac). Let us assume
that there is a run of Ac over ρ having the form (P0, s0) · · · (Pk, sk) such that (P0, s0) ∈ Q0,c

and (Pk, sk) ∈ Fc implying that qacc /∈ Pk. By construction, P0 = {q ∈ M | (q, s0) ∈ Q0},
and for all i ∈ [0, k − 1], si = ρ(i) and Pi+1 = {p ∈ M̃ |(p, si+1) ∈ δ′′(q, si) for some q ∈ Pi}.
Since ρ ∈ L(A′′), there is s ∈ S, (q0, s0) ∈ Q0 and an accepting run of A′′ over ρ having the
form (q0, s0) · · · (qk−1, sk−1)(qk, s) where qk = qacc. By definition of the transition function δ′′
of A′′, we can also assume that s = sk. It follows that qi ∈ Pi for all i ∈ [0, k], which is a
contradiction since qacc /∈ Pk. Therefore ρ /∈ L(Ac).

As for the converse direction, let us assume that ρ /∈ L(Ac). We have to show that
ρ ∈ L(A′′). By construction, there exists some run of Ac over ρ starting from an initial
state (recall that R(s) 6= ∅ for all s ∈ S). Moreover, each of these runs has the form
(P0, s0) · · · (Pk, sk) such that P0 = {q ∈M | (q, s0) ∈ Q0}, qacc ∈ Pk, and for all i ∈ [0, k − 1],
si = ρ(i) and Pi+1 = {p ∈ M̃ |(p, si+1) ∈ δ(q, si) for some q ∈ Pi}. It easily follows that
there is an accepting run of A′′ over ρ from some initial state in P0 × {s0}, thus proving the
thesis.

14

An MC algorithm for full HS can be built as follows. Let ϕ be an HS formula. First of
all, we convert ϕ into an equivalent formula, called existential form of ϕ, that makes use of
negations, disjunctions, and the existential modalities 〈B〉, 〈B〉, 〈E〉, and 〈E〉, only. For all
h ≥ 1, let HSh denote the syntactical HS fragment consisting only of formulas ϕ such that
the nesting depth of negation in the existential form of ϕ is at most h. Moreover ¬HSh is
the set of formulas ϕ such that ¬ϕ ∈ HSh.

Given an HS formula ϕ, checking whether K 6|= ϕ reduces to checking the existence of
an initial trace ρ of K such that K , ρ |= ¬ϕ. By exploiting Proposition 6, 7, and 8, we can
build in a compositional way (driven by the structure of ¬ϕ) a K -NFA A accepting the set
of initial traces ρ such that K , ρ |= ¬ϕ and check A for emptiness. The next theorem states
the main result of the section.

Theorem 9. There exists a constant c such that, given a finite Kripke structure K and an
HS formula ϕ, one can construct a K -NFA with O(|K | · Tower(h, |ϕ|c)) states accepting the
set of traces ρ of K such that K , ρ |= ϕ, where h is the nesting depth of negation in the
existential form of ϕ.

Moreover, for each h ≥ 0, the MC problem for ¬HSh is in h-EXPTIME. Additionally,
for a constant-length formula, the MC problem is in P.

It is worth recalling a result, proved in [6] for HS under the hypothesis of homogeneity,
which immediately propagates to the complexity of the MC problem for full HS extended
with regular expressions.

Theorem 10. The MC problem for HS formulas over finite Kripke structures is EXPSPACE-
hard (under polynomial-time reductions).

In the next section, we focus on the complexity of fragments of HS.

5. The Fragments AABBE and AAEBE

In this section we focus on the syntactically maximal fragments AABBE and AAEBE of
HS showing that they feature a lower computational complexity w.r.t. the general case. First
of all we prove in Section 5.1 that they enjoy an exponential small-model property, stating
that if ρ is a trace of a finite Kripke structure K and ψ is an AABBE formula, then there is a
trace ρ′ such that K , ρ |= ψ if and only if K , ρ′ |= ψ and |ρ′| is exponential in the nesting
depth of the 〈B〉 modality in ψ.

In Section 5.2, we exploit this small-model property to design a MC algorithm for AABBE
belonging to the complexity class AEXPpol, namely, the class of problems decidable by
singly exponential-time bounded Alternating Turing Machines with a polynomial-bounded
number of alternations. Finally, in Section 5.3, we show that MC for AABBE (actually the
smaller fragment BE would suffice) is hard for AEXPpol, hence proving the completeness
for that class.

15

5.1. Exponential Small-Model Property for AABBE

Here we prove the exponential small-model property for AABBE, which will be used as
the basic step to prove that the MC problem for AABBE belongs to AEXPpol.

Let us consider a finite Kripke structure K = (AP , S,R, µ, s0) and a finite set spec =
{r1, . . . , rH} of (propositional-based) regular expressions over AP . The small-model ensures
that for each h ≥ 0 and trace ρ of K , it is possible to build another trace ρ′ of K , of bounded
exponential length, which is indistinguishable from ρ with respect to the fulfilment of any
AABBE formula ϕ having atomic formulas in spec and nesting depth of the modality 〈B〉 at
most h (written dB(ϕ) ≤ h). Formally, dB(ϕ) is inductively defined as follows:

• dB(r) = 0, for any RE r over AP ;

• dB(¬ψ) = dB(ψ);

• dB(ψ ∧ φ) = max{dB(ψ), dB(φ)};

• dB(〈B〉ψ) = 1 + dB(ψ);

• dB(〈X〉ψ) = dB(ψ), for X ∈ {A,A,B,E}.

In order to state the result, we first introduce the notion of h-prefix bisimilarity between
a pair of traces ρ and ρ′ of K . As proved by Proposition 16 below, h-prefix bisimilarity
is a sufficient condition for two traces ρ and ρ′ to be indistinguishable with respect to the
fulfillment of any AABBE formula ϕ over spec with dB(ϕ) ≤ h. Then, for a given trace ρ,
we show how to determine a subset of positions of ρ, called the h-prefix sampling of ρ, that
allows us to build another trace ρ′ with single exponential length (both in h and |spec|, where
|spec| is defined as

∑
r∈spec |r|) such that ρ and ρ′ are h-prefix bisimilar.

For a regular expression r` in spec, with ` ∈ [1, H], let A` = (2AP , Q`, Q
0
` ,∆`, F`) be

the canonical (complete) NFA accepting L(r`) (recall that |Q`| ≤ 2|r`|). Without loss of
generality, we assume that the sets of states of these automata are pairwise disjoint.

The notion of prefix bisimilarity uses the notion of summary of a trace ρ of K , namely a
tuple “recording” the initial and final states of ρ, and, for each automaton A`, with ` ∈ [1, H],
the pairs of states q, q′ ∈ Q` such that some run of A` over µ(ρ) takes from q to q′.

Definition 11 (Summary of a trace). Let ρ be a trace of K with |ρ| = n. The summary
S(ρ) of ρ (w.r.t. spec) is the triple (ρ(1),Π, ρ(n)), where

Π={(q, q′) | q, q′ ∈ Q` for some ` ∈ [1, H], and there is a run of A` from q to q′ over µ(ρ)}.

Note that the number of summaries is at most |S|2 · 2(2|spec|)2 . The following result can
be easily proved.

Proposition 12. Let h ≥ 0, and ρ and ρ′ be two traces of K such that S(ρ) = S(ρ′). Then,
for all regular expressions r ∈ spec and traces ρL and ρR of K such that ρL ? ρ and ρ ? ρR
are defined, the following properties hold:

16

1. µ(ρ) ∈ L(r) if and only if µ(ρ′) ∈ L(r);
2. S(ρL ? ρ) = S(ρL ? ρ

′);
3. S(ρ ? ρR) = S(ρ′ ? ρR).

We now introduce the notion of prefix bisimilarity between a pair of traces ρ and ρ′ of K .

Definition 13 (Prefix bisimilarity). Let h ≥ 0. Two traces ρ and ρ′ of K are h-prefix
bisimilar (w.r.t. spec) if the following conditions inductively hold:

• for h = 0: S(ρ) = S(ρ′);

• for h > 0: S(ρ) = S(ρ′) and for each proper prefix ν of ρ (respectively, proper prefix ν ′
of ρ′), there exists a proper prefix ν ′ of ρ′ (respectively, proper prefix ν of ρ) such that
ν and ν ′ are (h− 1)-prefix bisimilar.

Property 14. For all h ≥ 0, h-prefix bisimilarity is an equivalence relation over traces of K .

The h-prefix bisimilarity of two traces ρ and ρ′ is preserved by right (respectively, left)
?-concatenation with another trace of K :

Proposition 15. Let h ≥ 0, and ρ and ρ′ be two h-prefix bisimilar traces of K . Then, for
all traces ρL and ρR of K such that ρL ? ρ and ρ ? ρR are defined, the following holds:

1. ρL ? ρ and ρL ? ρ′ are h-prefix bisimilar;
2. ρ ? ρR and ρ′ ? ρR are h-prefix bisimilar.

Proof. Let us note first that, since S(ρ) = S(ρ′), we have fst(ρ) = fst(ρ′) and lst(ρ) = lst(ρ′).
Hence ρL ? ρ (respectively, ρ ? ρR) is defined if and only if ρL ? ρ′ (respectively, ρ′ ? ρR) is
defined. The proofs of points (1.) and (2.) are by induction on h ≥ 0.

(1.) Since ρ and ρ′ are h-prefix bisimilar, S(ρ) = S(ρ′). By Proposition 12, S(ρL ? ρ) =
S(ρL ? ρ

′). Thus, if h = 0 (base case), the thesis follows. Now let h > 0 (induction step). Let
us assume that ν is a proper prefix of ρL ? ρ (the symmetric case, where we consider a proper
prefix of ρL ? ρ′ is similar). We need to show that there exists a proper prefix ν ′ of ρL ? ρ′
such that ν and ν ′ are (h − 1)-prefix bisimilar. If ν is a prefix of ρL, then we set ν ′ = ν
and the result trivially follows (note that, since ρ and ρ′ are h-prefix bisimilar, it holds that
|ρ| > 1 if and only if |ρ′| > 1). Otherwise, there is a proper prefix ξ of ρ such that ν = ρL ? ξ.
Since ρ and ρ′ are h-prefix bisimilar, there exists a proper prefix ξ′ of ρ′ such that ξ and ξ′
are (h− 1)-prefix bisimilar. Thus, by setting ν ′ = ρL ? ξ

′, by the inductive hypothesis the
thesis follows.

(2.) By Proposition 12, S(ρ ? ρR) = S(ρ′ ? ρR). Thus, if h = 0, the thesis follows. Now, let
us assume that h > 0. We proceed by a double induction on |ρR|. As for the base case, where
|ρR| = 1, the result is obvious. Thus let us assume that |ρR| > 1. Let ν be a proper prefix of
ρ ? ρR (the symmetric case, where we consider a proper prefix of ρ′ ? ρR is similar). We need
to show that there exists a proper prefix ν ′ of ρ′ ? ρR such that ν and ν ′ are (h− 1)-prefix
bisimilar. If ν = ρ or ν is a proper prefix of ρ, then there exists a prefix ν ′ of ρ′ such that
ν and ν ′ are (h− 1)-prefix bisimilar. Thus, since ν ′ is a proper prefix of ρ′ ? ρR, the result

17

follows. Otherwise, there exists a proper prefix ξ of ρR such that ν = ρ ? ξ. By setting
ν ′ = ρ′ ? ξ, and considering the inductive hypothesis on |ρR|, we obtain that ν and ν ′ are
h-prefix bisimilar, hence (h− 1)-prefix bisimilar as well, concluding the proof.

By exploiting Propositions 12 and 15, we can prove that h-prefix bisimilarity preserves
the fulfillment of AABBE formulas over spec having nesting depth of modality 〈B〉 at most h.

Proposition 16. Let h ≥ 0, and ρ and ρ′ be two h-prefix bisimilar traces of K . Then, for
each AABBE formula ψ over spec with dB(ψ) ≤ h, we have:

K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ.

Proof. We prove the proposition by a nested induction on the structure of the formula ψ
and on the nesting depth dB(ψ).

As for the base case, ψ is a regular expression in spec. Since S(ρ) = S(ρ′) (as ρ and ρ′
are h-prefix bisimilar) the thesis holds by Proposition 12.

Let us now consider the inductive step. The cases where the root modality of ψ is a
Boolean connective directly follow by the inductive hypothesis. As for the cases where the
root modality is 〈A〉 or 〈A〉, the result follows from the fact that, being ρ and ρ′ h-prefix
bisimilar, we have fst(ρ) = fst(ρ′) and lst(ρ) = lst(ρ′). It remains to consider the cases where
the root modality is 〈B〉, 〈B〉, or 〈E〉. We prove the implication K , ρ |= ψ =⇒ K , ρ′ |= ψ (the
converse implication is similar). Let K , ρ |= ψ.

• ψ = 〈B〉ϕ: since 0 < dB(ψ) ≤ h, it holds that h > 0. As K , ρ |= 〈B〉ϕ, there is a proper
prefix ν of ρ such that K , ν |= ϕ. Since ρ and ρ′ are h-prefix bisimilar, there is a proper
prefix ν ′ of ρ′ such that ν and ν ′ are (h− 1)-prefix bisimilar. Being dB(ϕ) ≤ h− 1, by
the inductive hypothesis we obtain that K , ν ′ |= ϕ. Hence K , ρ′ |= 〈B〉ϕ.

• ψ = 〈B〉ϕ: since K , ρ |= 〈B〉ϕ, there is a trace ρR such that |ρR| > 1 and K , ρ?ρR |= ϕ.
By Proposition 15, ρ?ρR and ρ′ ?ρR are h-prefix bisimilar. By the inductive hypothesis
on the structure of the formula, we obtain that K , ρ′ ? ρR |= ϕ, hence, K , ρ′ |= 〈B〉ϕ.

• ψ = 〈E〉ϕ: this case is similar to the previous one.

In the following, we show how a trace ρ, whose length exceeds a suitable exponential
bound—precisely, (|S| · 2(2|spec|)2)h+2—can be contracted preserving h-prefix bisimilarity and,
consequently, fulfillment of formulas ϕ with dB(ϕ) ≤ h. The basic contraction step of ρ is
performed by choosing a subset of ρ-positions called h-prefix sampling (PSh). A contraction
can be performed whenever there are two positions ` < `′ satisfying S(ρ(1, `)) = S(ρ(1, `′))
in between two consecutive positions in the linear ordering of PSh. We prove that by taking
the contraction ρ′ = ρ(1, `) · ρ(`′+ 1, |ρ|), we obtain a trace of K which is h-prefix bisimilar to
ρ. The basic contraction step can then be iterated over ρ′ until the length bound is reached.

The notion of h-prefix sampling is inductively defined using the definition of prefix-skeleton
sampling. For a set I of natural numbers, by “two consecutive elements of I” we mean a pair
of elements i, j ∈ I such that i < j and I ∩ [i, j] = {i, j}.

18

i j

S S1 S1 S1 S2 S1 S3 S1 S2 S3 S1 S ′

ρ(i, j)

Pos = {i, i+ 1, i+ 4, i+ 6, j}

Figure 4: Example of prefix-skeleton sampling Pos of a trace ρ in the interval [i, j].

Definition 17 (Prefix-skeleton sampling). Let ρ be a trace of K . Given two ρ-positions i
and j, with i ≤ j, the prefix-skeleton sampling of ρ in the interval [i, j] is the minimal set
Pos ⊇ {i, j} of ρ-positions in the interval [i, j] satisfying the following condition:

• for each k ∈ [i+ 1, j− 1], the minimal position k′ ∈ [i+ 1, j− 1] such that S(ρ(1, k′)) =
S(ρ(1, k)) belongs to Pos.

An example of prefix-skeleton sampling Pos of a trace ρ in the interval [i, j] is given
in Figure 4. Assuming that S(ρ(1, u)) = S1 for u ∈ {i + 1, i + 2, i + 3, i + 5, i + 7, i + 10},
S(ρ(1, u′)) = S2 for u′ ∈ {i+ 4, i+ 8}, and S(ρ(1, u′′)) = S3 for u′′ ∈ {i+ 6, i+ 9}, we have
that Pos = {i, i+ 1, i+ 4, i+ 6, j}.

Notice that, as an immediate consequence of Definition 17, the prefix-skeleton sampling
Pos of (any) trace ρ in an interval [i, j] of ρ-positions is such that |Pos| ≤ (|S| · 2(2|spec|)2) + 2.

Definition 18 (h-prefix sampling). Let h ≥ 0. The h-prefix sampling of a trace ρ of K is
the minimal set PSh of ρ-positions inductively satisfying the following conditions:

• Base case: h = 0. PS 0 = {1, |ρ|};

• Inductive step: h > 0. (i) PSh ⊇ PSh−1 and (ii) for all pairs of consecutive positions
i, j in PSh−1, the prefix-skeleton sampling of ρ in the interval [i, j] belongs to PSh.

Let i1 < . . . < iN be the ordered sequence of positions in PSh (note that i1 = 1 and
iN = |ρ|). The h-sampling word of ρ is the sequence of summaries S(ρ(1, i1)) · · · S(ρ(1, iN)).

We can state the following upper bound to the cardinality of prefix samplings.

Property 19. The cardinality of the h-prefix sampling PSh of a trace ρ of K is such that

|PSh| ≤ (|S| · 2(2|spec|)2)h+1.

As proved in the following lemma, for two traces, the property of having the same
h-sampling word, is a sufficient condition to guarantee that they are h-prefix bisimilar.

Lemma 20. For h ≥ 0, two traces having the same h-sampling word are h-prefix bisimilar.

Proof. The proof of the Lemma can be immediately derived by a stronger result stated in
the following Claim.

19

Claim 21. Let h ≥ 0, ρ and ρ′ be two traces of K , and PSh and PS ′h be the two h-prefix
samplings of ρ and ρ′, respectively. Assume that ρ and ρ′ have the same h-sampling word,
namely there is N ≥ 1 such that PSh : i1 < i2 < . . . < iN , PS ′h : i′1 < i′2 < . . . < i′N , and for
all j ∈ [1, N], S(ρ(1, ij)) = S(ρ′(1, i′j)).

Then, for all j ∈ [1, N − 1], n ∈ [ij + 1, ij+1] and n′ ∈ [i′j + 1, i′j+1] such that S(ρ[1, n]) =
S(ρ′[1, n′]), it holds that ρ(1, n) and ρ′(1, n′) are h-prefix bisimilar.

Proof. The proof is by induction on h ≥ 0. For h = 0, the result is obvious. Now let us assume
that h > 0. If N = 1 (respectively, N = 2), then ρ = ρ′ and |ρ| = |ρ′| = N , and the thesis
trivially holds. Now, let us assume that N > 2. Since by hypothesis S(ρ(1, n)) = S(ρ′(1, n′)),
we need to show that:

1. for each m ∈ [1, n− 1], there exists m′ ∈ [1, n′ − 1] such that ρ(1,m) and ρ′(1,m′) are
(h− 1)-prefix bisimilar;

2. for each m′ ∈ [1, n′ − 1], there exists m ∈ [1, n− 1] such that ρ(1,m) and ρ′(1,m′) are
(h− 1)-prefix bisimilar;

We only prove point (1.), the proof of (2.) being symmetric. We exploit in the proof the
following fact that can be easily shown: let k ∈ [0, h − 1] and 1 = x1 < . . . < xr = N be
the subsequence of 1, . . . , N such that ix1 < . . . < ixr is the k-prefix sampling of ρ. Then,
i′x1 < . . . < i′xr is the k-prefix sampling of ρ′.

Now we prove (1.). Let m ∈ [1, n− 1]. If m = 1, we set m′ = 1, and the result follows.
Now, let us assume that m ≥ 2. Since h > 0, there must exist x, y ∈ [1, N] such that x < y,
m ∈ [ix + 1, iy], and ix and iy are two consecutive positions in the (h− 1)-prefix sampling of
ρ. By the fact above, i′x and i′y are two consecutive positions in the (h− 1)-prefix sampling
of ρ′. We distinguish two cases:

• m = iy. Since n ∈ [ij + 1, ij+1] and m < n, it holds that iy ≤ ij. Hence, i′y ≤ i′j as
well. Moreover, since n′ > i′j, it holds that i′y < n′. We set m′ = i′y. As S(ρ(1, iy)) =
S(ρ′(1, i′y)), m = iy, m′ = i′y, and ix and iy (respectively, i′x and i′y) are two consecutive
positions in the (h− 1)-prefix sampling of ρ (respectively, ρ′), the thesis follows by the
inductive hypothesis on h.

• m 6= iy. Hence, m ∈ [ix + 1, iy − 1]. Since ix and iy are two consecutive positions in
the (h− 1)-prefix sampling of ρ, there must exist z ∈ [x+ 1, y − 1] such that iz ≤ m
and S(ρ(1,m)) = S(ρ(1, iz)). Since iz ≤ m, m < n, and n ∈ [ij + 1, ij+1], it holds that
iz ≤ ij. Hence, i′z ≤ i′j < n′. We set m′ = i′z. As S(ρ(1, iz)) = S(ρ′(1, i′z)), we obtain
that S(ρ(1,m)) = S(ρ′(1,m′)), m ∈ [ix + 1, iy] and m′ ∈ [i′x + 1, i′y]. Thus, being ix and
iy (respectively, i′x and i′y) two consecutive positions in the (h− 1)-prefix sampling of ρ
(respectively, ρ′), by the inductive hypothesis on h, the result follows.

This concludes the proof of the Claim and of Lemma 20.

The sufficient condition of Lemma 20 allows us to finally state the exponential small-model
property for AABBE. In the proof of Theorem 23 below, it is shown how to derive from any
trace ρ of K , an h-prefix bisimilar trace ρ′ induced by ρ (in the sense that ρ′ is obtained

20

ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

Figure 5: A trace π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10) induced by ρ.

by contracting ρ, namely, by concatenating subtraces of ρ in an ordered way, provided
that ρ′ is another trace of K) such that |ρ′| ≤ (|S| · 2(2|spec|)2)h+2. By Proposition 16, ρ′ is
indistinguishable from ρ w.r.t. the fulfilment of any AABBE formula ϕ over the set of atomic
formulas in spec such that dB(ϕ) ≤ h. We preliminarily define the notion of induced trace.

Definition 22 (Induced trace). Let ρ ∈ TrcK be a trace with |ρ| = n. A trace induced by ρ
is a trace π ∈ TrcK such that there exists an increasing sequence of ρ-positions i1 < . . . < ik,
with i1 = 1, ik = n, and π = ρ(i1) · · · ρ(ik). Moreover, we say that the π-position j and the
ρ-position ij are corresponding.

Note that if π is induced by ρ, then fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ|. See
Figure 5 for an example.

Theorem 23 (Exponential small-model property for AABBE). Let ρ be a trace of K and
h ≥ 0. Then, there exists a trace ρ′ induced by ρ, whose length is at most (|S| · 2(2|spec|)2)h+2,
which is h-prefix bisimilar to ρ. In particular, for every AABBE formula ψ with atomic
formulas in spec and such that dB(ψ) ≤ h, it holds that K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ.

Proof. We show that if |ρ| > (|S| · 2(2|spec|)2)h+2, then there exists a trace ρ′ induced by ρ
such that |ρ′| < |ρ| and ρ and ρ′ have the same h-sampling word.

Assume that |ρ| > (|S| · 2(2|spec|)2)h+2. Let PSh : 1 = i1 < . . . < iN = |ρ| be the h-prefix
sampling of ρ. By Property 19, |PSh| ≤ (|S| · 2(2|spec|)2)h+1. Since the number of distinct
summaries (w.r.t. spec) associated with the prefixes of ρ is at most |S| · 2(2|spec|)2 , there must
be two consecutive positions ij and ij+1 in PSh such that for some `, `′ ∈ [ij + 1, ij+1 − 1]
with ` < `′, S(ρ(1, `)) = S(ρ(1, `′)). It easily follows that the sequence ρ′ given by ρ′ :=
ρ(1, `) · ρ(`′ + 1, |ρ|) is a trace induced by ρ such that |ρ′| < |ρ|, and ρ and ρ′ have the
same h-sampling word. Now, by Lemma 20 ρ and ρ′ are h-prefix bisimilar and by applying
Proposition 16 we have that K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ. Now, if |ρ′| ≤ (|S| · 2(2|spec|)2)h+2 the
thesis holds, otherwise a sequence of contraction steps as shown above can be performed,
until the length of the contracted trace fulfills the requirement.

5.2. AEXPpol-membership of MC for AABBE

In this section, taking advantage of the exponential small-model property proved in
the previous section, we design a MC algorithm for AABBE formulas belonging to the
complexity class AEXPpol. We recall that AEXPpol is the class of problems solvable by
singly exponential-time bounded Alternating Turing Machines (ATMs, for short) performing
at most a polynomial-bounded number of alternations. More formally, an ATMM (we refer

21

to [13] for standard syntax and semantics of ATMs) is singly exponential-time bounded if there
exists an integer constant c ≥ 1 such that, for each input α, any computation starting on α
halts after at most 2|α|

c steps. The ATMM has a polynomial-bounded number of alternations
if there exists an integer constant c′ ≥ 1 such that, for all inputs α and computations π
starting from α, the number of alternations of existential and universal configurations along
π is at most |α|c′ .

In the sequel we restrict ourselves w.l.o.g. to AABBE formulas in negation normal form
(abbreviated as NNF, and also known as positive normal form), i.e., formulas where negation
is applied only to atomic formulas (regular expressions).3 Any formula can be converted (in
linear time) into an equivalent formula in NNF, having at most double length (by using De
Morgan’s laws and duality of HS modalities). For ϕ in NNF, the dual of ϕ, denoted as ϕ̃, is
defined as the NNF of ¬ϕ.

The complexity measure of an AABBE formula ϕ that we shall consider is the standard
alternation depth, denoted by Υ(ϕ), between the existential 〈X〉 and universal modalities [X]
(and vice versa) occurring in the NNF of ϕ, for X ∈ {B,E}. Note that the definition does
not consider the modalities associated with the Allen’s relations in {A,A,B}. Moreover, let
FMC be the set of pairs (K , ϕ) consisting of a Kripke structure K and an AABBE formula
ϕ such that K |= ϕ (i.e., K is a model of ϕ). The following theorem states the complexity
upper bound.

Theorem 24. One can construct a singly exponential-time bounded ATM accepting FMC
whose number of alternations on an input (K , ϕ) is at most Υ(ϕ) + 2.

To prove the assertion of Theorem 24 we define a procedure in the remaining part of the
section. Such a procedure can be easily translated into an ATM (the translation is omitted).

We start with some auxiliary notation. Let us fix a finite Kripke structure K with set of
states S and an AABBE formula ϕ in NNF. Let h = dB(ϕ), and spec be the set of regular
expressions occurring in ϕ. A certificate of (K , ϕ) is a trace ρ of K whose length is less than
(|S| · 2(2|spec|)2)h+2 (the bound for the exponential small-model property of Theorem 23). A
B-witness (respectively, E-witness) of a certificate ρ for (K , ϕ), is a certificate ρ′ of (K , ϕ)
such that ρ′ is h-prefix bisimilar to a trace having the form ρ ? ρ′′ (respectively, ρ′′ ? ρ) for
some certificate ρ′′ of (K , ϕ) with |ρ′′| > 1. By SD(ϕ) we denote the set consisting of the
subformulas ψ of ϕ and the duals ψ̃. The results stated in Section 5.1 are used to prove
the properties of certificates listed in the following proposition and exploited in the MC
algorithm.

Proposition 25. Let K be a finite Kripke structure, ϕ be an AABBE formula in NNF, and
ρ be a certificate for (K , ϕ). The following properties hold:

1. for each 〈X〉ψ ∈ SD(ϕ), with X ∈ {B,E}, it holds K , ρ |= 〈X〉ψ if and only if there
exists an X-witness ρ′ of ρ for (K , ϕ) such that K , ρ′ |= ψ;

3Not to be confused with the negation form used in the previous section.

22

2. for each trace having the form ρ ? ρ′ (respectively, ρ′ ? ρ) such that ρ′ is a certificate for
(K , ϕ), one can construct in time singly exponential in the size of (K , ϕ), a certificate
ρ′′ which is h-prefix bisimilar to ρ ? ρ′ (respectively, ρ′ ? ρ), with h = dB(ϕ).

Proof. (1.) Let 〈X〉ψ ∈ SD(ϕ) with X ∈ {B,E}, h = dB(ϕ), and ρ be a certificate for (K , ϕ).
Let us assume that X = E (the case for X = B is similar).

First we assume that there exists an E-witness ρ′ of ρ for (K , ϕ) such that K , ρ′ |= ψ.
Hence ρ′ is h-prefix bisimilar to a trace having the form ρ′′ ? ρ, with |ρ′′| > 1. Since
〈E〉ψ ∈ SD(ϕ), it holds that dB(〈E〉ψ) ≤ h. By Proposition 16 we have that K , ρ′′ ? ρ |= ψ
and, then, K , ρ |= 〈E〉ψ.

To prove the converse implication, we assume that K , ρ |= 〈E〉ψ. Then, there exists a
trace having the form ρ′′ ? ρ with |ρ′′| > 1 such that K , ρ′′ ? ρ |= ψ. By Theorem 23 there
exists a certificate ν for (K , ϕ) which is h-prefix bisimilar to ρ′′. By Proposition 15, ν ? ρ is
h-prefix bisimilar to ρ′′ ? ρ. By applying Proposition 16 we deduce that K , ν ? ρ |= ψ. By
applying again Theorem 23, there exists a certificate ρ′ for (K , ϕ) which is h-prefix bisimilar
to ν ? ρ such that K , ρ′ |= ψ. Thus, since ρ′ is an E-witness of ρ for (K , ϕ), the property of
point (1.) follows.

(2.) From the trace ρ ? ρ′ (respectively, ρ′ ? ρ), where both ρ and ρ′ are certificates for
(K , ϕ), we first compute the h-prefix sampling of ρ ? ρ′ (respectively, ρ′ ? ρ), where h = dB(ϕ).
Then, proceeding as in the proof of Theorem 23, we extract from ρ ? ρ′ (respectively, ρ′ ? ρ) a
trace which is h-prefix bisimilar to ρ ? ρ′ (respectively, ρ′ ? ρ). Since the lengths of ρ and ρ′
are singly exponential in the sizes of (K , ϕ), the property of point (2.) follows.

Let AA(ϕ) be the set of formulas in SD(ϕ) having the form 〈X〉ψ′ or [X]ψ′, with
X ∈ {A,A}. An AA-labeling Lab for (K , ϕ) is a mapping associating with each state s of K
a maximally consistent set of subformulas of AA(ϕ). More precisely, for all s ∈ S, Lab(s) is
such that for all ψ, ψ̃ ∈ AA(ϕ), Lab(s) ∩ {ψ, ψ̃} is a singleton. We say that Lab is valid if,
for all states s ∈ S and ψ ∈ Lab(s), we have K , s |= ψ (we consider s as a length-1 trace).
Note that if Lab is valid, then (i) for each trace ρ of K and 〈A〉ψ′ ∈ AA(ϕ) (respectively,
〈A〉ψ′ ∈ AA(ϕ)), it holds that K , ρ |= 〈A〉ψ′ (respectively, K , ρ |= 〈A〉ψ′) if and only if
〈A〉ψ′ ∈ Lab(lst(ρ)) (respectively, 〈A〉ψ′ ∈ Lab(fst(ρ))). Analogously, (ii) for each trace ρ of
K and [A]ψ′ ∈ AA(ϕ) (respectively, [A]ψ′ ∈ AA(ϕ)), it holds that K , ρ |= [A]ψ′ (respectively,
K , ρ |= [A]ψ′) if and only if [A]ψ′ ∈ Lab(lst(ρ)) (respectively, [A]ψ′ ∈ Lab(fst(ρ))).

Finally, a well-formed set for (K , ϕ) is a finite set W consisting of pairs (ψ, ρ) such that
ψ ∈ SD(ϕ) and ρ is a certificate of (K , ϕ). W is said to be universal if each formula occurring
inW has the form [X]ψ, with X ∈ {B,E}. The dual W̃ ofW is the well-formed set obtained
by replacing each pair (ψ, ρ) ∈ W with (ψ̃, ρ). A well-formed set W is valid if, for each
(ψ, ρ) ∈ W , it holds that K , ρ |= ψ.

We can now introduce the procedure check reported in Algorithm 1 that defines the
ATM required to prove the assertion of Theorem 24. The procedure check takes a pair (K , ϕ)
as input and: (1) it guesses an AA-labeling Lab for (K , ϕ) (line 1); (2) it checks that Lab
is valid (lines 2–9); (3) for every certificate ρ starting from the initial state, it verifies that
K , ρ |= ϕ (lines 10–11). To perform steps (2)–(3), it exploits the auxiliary ATM procedure

23

Algorithm 1 check(K , ϕ) [K : finite Kripke structure, ϕ: AABBE formula in NNF]
1: existentially choose an AA-labeling Lab for (K , ϕ)
2: for each state s and ψ ∈ Lab(s) do
3: Case ψ = 〈A〉ψ′ (respectively, ψ = 〈A〉ψ′)
4: existentially choose a certificate ρ with fst(ρ) = s (respectively, lst(ρ) = s)
5: checkTrue(K ,ϕ,Lab)({(ψ′, ρ)})
6: case ψ = [A]ψ′ (respectively, ψ = [A]ψ′)
7: universally choose a certificate ρ with fst(ρ) = s (respectively, lst(ρ) = s)
8: checkTrue(K ,ϕ,Lab)({(ψ′, ρ)})
9: EndCase
10: universally choose a certificate ρ for (K , ϕ) with fst(ρ) = s0 / s0 is the initial state of K
11: checkTrue(K ,ϕ,Lab)({(ϕ, ρ)})

checkTrue reported in Algorithm 2). The procedure checkTrue takes as input a well-formed
set W for (K , ϕ) and, assuming that the current AA-labeling Lab is valid, checks whether
W is valid. For each pair (ψ, ρ) ∈ W such that ψ does not have the form [X]ψ′, with
X ∈ {B,E}, checkTrue directly checks whether or not K , ρ |= ψ (lines 4–29). In order to
allow a deterministic choice of the current element of the iteration (line 2), we assume that
the set W is implemented as an ordered data structure. At each iteration of the while loop
in checkTrue, the current pair (ψ, ρ) ∈ W is processed according to the semantics of HS,
exploiting the guessed AA-labeling Lab for modalities 〈A〉, 〈A〉, [A] and [A] (lines 10–15) and
〈E〉-witnesses and 〈B〉-witnesses guaranteed by Proposition 25 for modalities 〈E〉 and 〈B〉
(lines 26–28). The processing is either deterministic or based on an existential choice, and
the currently processed pair (ψ, ρ) is either removed from W , or replaced with pairs (ψ′, ρ′)
such that ψ′ is a strict subformula of ψ (it is the case of boolean connectives and modalities
〈B〉, [B], 〈E〉 and 〈B〉, lines 21–28).

At the end of the while loop, the resulting well formed set W is either empty or universal.
In the former case, the procedure accepts (lines 30–31). In the latter case, there is a switch
in the current operation mode (line 33). For each element (ψ, ρ) in the dual of W—note
that the root modality of ψ is either 〈E〉 or 〈B〉—the auxiliary ATM procedure checkFalse
(reported in Algorithm 7 of Appendix A.2) is invoked, that accepts the input {(ψ, ρ)} if and
only if K , ρ 6|= ψ. The procedure checkFalse is the “dual” of checkTrue, as it is simply
obtained from checkTrue by switching accept and reject, by switching existential choices
and universal choices, and by converting the last call to checkFalse into checkTrue. Thus
checkFalse accepts an input W if and only if W is not valid.

Notice that the number of alternations of the ATM check between existential and universal
choices is clearly the number of switches between the calls to the procedures checkTrue and
checkFalse, plus 2, i.e. Υ(ϕ) + 2.

The correctness of the procedure check and its complexity bound is stated in the following
Proposition that immediately implies Theorem 24.

Proposition 26. The ATM check is a singly exponential-time bounded ATM accepting
FMC, whose number of alternations on input (K , ϕ) is at most Υ(ϕ) + 2.

24

Algorithm 2 checkTrue(K ,ϕ,Lab)(W) [W: well-formed set, Lab: AA-labeling for (K , ϕ)]

1: while W is not universal do
2: deterministically select (ψ, ρ) ∈ W such

that ψ does not have the form [E]ψ′ and
[B]ψ′

3: W ←W \ {(ψ, ρ)}
4: Case ψ = r with r ∈ RE
5: if ρ /∈ L(r) then
6: reject the input
7: case ψ = ¬r with r ∈ RE
8: if ρ ∈ L(r) then
9: reject the input
10: case ψ = 〈A〉ψ′ or ψ = [A]ψ′

11: if ψ /∈ Lab(lst(ρ)) then
12: reject the input
13: case ψ = 〈A〉ψ′ or ψ = [A]ψ′

14: if ψ /∈ Lab(fst(ρ)) then
15: reject the input
16: case ψ = ψ1 ∨ ψ2

17: existentially choose i = 1, 2
18: W ←W ∪ {(ψi, ρ)}

19: case ψ = ψ1 ∧ ψ2

20: W ←W ∪ {(ψ1, ρ), (ψ2, ρ)}
21: case ψ = 〈B〉ψ′
22: existentially choose ρ′ ∈ Pref(ρ)
23: W ←W ∪ {(ψ′, ρ′)}
24: case ψ = [B]ψ′

25: W ←W ∪ {(ψ′, ρ′) | ρ′ ∈ Pref(ρ)}
26: case ψ = 〈X〉ψ′ with X ∈ {E,B}
27: existentially choose an X-witness ρ′ of

ρ for (K , ϕ)
28: W ←W ∪ {(ψ′, ρ′)}
29: EndCase
30: if W = ∅ then
31: accept the input
32: else
33: universally choose (ψ, ρ) ∈ W̃
34: checkFalse(K ,ϕ,Lab)({(ψ, ρ)})

The proof of Proposition 26 is given in details in Appendix A.3. The proof exploits the
exponential small-model property for AABBE (Theorem 23) which allows us to consider only
certificates, which are single exponential in the size of the input (K , ϕ), instead of traces of
arbitrary length.

5.3. AEXPpol-hardness of MC for BE

Now we conclude Section 5 by showing that the MC problem for the fragment BE is
AEXPpol-hard (implying the AEXPpol-hardness of AABBE). The result is obtained by
a polynomial-time reduction from a variant of the domino-tiling problem for grids with
exponential-length rows and columns, called alternating multi-tiling problem.

An instance of this problem is a tuple I = (n,D,D0, H, V,M,Dacc), where: n is a positive
even natural number encoded in unary; D is a non-empty finite set of domino types ; D0 ⊆ D
is a set of initial domino types ; H ⊆ D ×D and V ⊆ D ×D are the horizontal and vertical
matching relations, respectively; M ⊆ D ×D is the multi-tiling matching relation; Dacc ⊆ D
is a set of accepting domino types.

A tiling of I is a map assigning a domino type to each cell of a 2n × 2n squared grid
coherently with the horizontal and vertical matching relations. Formally a tiling of I is a
map f : [0, 2n − 1]× [0, 2n − 1]→ D such that:

• for all i, j ∈ [0, 2n−1]×[0, 2n−1] with j < 2n−1, (f(i, j), f(i, j+1)) ∈ H (row-adjacency
requirement);

25

∀

∀

∃

X
2n

2n

∃

Figure 6: The alternating multi-tiling problem (for n = 4). The red lines represent the row-adjacency,
column-adjacency, and multi-cell requirements. The green tick denotes the acceptance requirement. The
quantifiers ∀/∃ associated with the first rows of each tiling mean that the content of these rows have to be
universally (respectively, existentially) selected, if they belong to an odd (respectively, even) tiling.

• for all i, j ∈ [0, 2n − 1]× [0, 2n − 1] with i < 2n − 1, (f(i, j), f(i+ 1, j)) ∈ V (column-
adjacency requirement).

The initial condition Init(f) := f(0, 0)f(0, 1) . . . f(0, 2n − 1) of the tiling f is the content of
the first row of f . A multi-tiling of I is a tuple (f1, . . . , fn) of n tilings which are coherent
w.r.t. the multi-tiling matching relation M , that is, such that:

• for all i, j ∈ [0, 2n−1]× [0, 2n−1] and ` ∈ [1, n−1], (f`(i, j), f`+1(i, j)) ∈M (multi-cell
requirement), and

• fn(2n − 1, j) ∈ Dacc for some j ∈ [0, 2n − 1] (acceptance requirement).

The alternating multi-tiling problem for an instance I is checking whether

∀w1 ∈ (D0)2n ,∃w2 ∈ (D0)2n , . . . ,∀wn−1 ∈ (D0)2n ,∃wn ∈ (D0)2n

such that there exists a multi-tiling (f1, . . . , fn), where for all i ∈ [1, n], Init(fi) = wi. See
Figure 6 for a visual representation of the alternating multi-tiling problem.

The following complexity result holds (for a proof we refer to [5]).

Theorem 27. The alternating multi-tiling problem is AEXPpol-complete.

The fact that the MC problem for the fragment BE is AEXPpol-hard is an immediate
corollary of the following result.

26

Theorem 28. One can construct, in time polynomial in the size of I, a finite Kripke structure
KI and a BE formula ϕI over the set of proposition letters AP = D∪({r, c}×{0, 1})∪{⊥, end}
such that KI |= ϕI if and only if I is a positive instance of the alternating multi-tiling problem.

The rest of this section is devoted to the construction of the Kripke structure KI and the
BE formula ϕI proving Theorem 28. Let AP be D ∪ ({r, c} × {0, 1})∪ {⊥, end}. The Kripke
structure KI is given by KI = (AP , S,R, µ, s0), where S = AP , s0 = end, µ is the identity
mapping (we identify a singleton set {p} with p), and R = {(s, s′) | s ∈ AP \ {end}, s′ ∈ AP}.
Note that the initial state end has no successors,4 and that a trace of KI can be identified
with its induced labeling sequence.

The construction of the BE formula ϕI is based on a suitable encoding of multi-tilings
which is described in the following. The symbols {r}×{0, 1} and {c}×{0, 1} in AP are used
to encode the values of two n-bits counters numbering the 2n rows and columns, respectively,
of a tiling. For a multi-tiling F = (f1, . . . , fn) and for all i, j ∈ [0, 2n − 1], the (i, j)-th
multi-cell (f1(i, j), . . . , fn(i, j)) of F is encoded by the word C of length 3n over AP , called
multi-cell code, given by

d1 · · · dn(r, b1) · · · (r, bn)(c, b′1) · · · (c, b′n),

where b1 · · · bn and b′1 · · · b′n are the binary encodings of the row number i and column number
j, respectively, and for all ` ∈ [1, n], d` = f`(i, j) (i.e., the content of the (i, j)-th cell
of component f`). The content of C is d1 · · · dn. Since F is a multi-tiling, the following
well-formedness requirement must be satisfied by the encoding C: for all ` ∈ [1, n − 1],
(d`, d`+1) ∈M . We call such words well-formed multi-cell codes.

Definition 29 (Multi-tiling codes). A multi-tiling code is a finite word w over AP obtained
by concatenating well-formed multi-cell codes so that the following conditions hold:

• for all i, j ∈ [0, 2n − 1], there is a multi-cell code in w with row number i and column
number j (completeness requirement);

• for all multi-cell codes C and C ′ occurring in w, if C and C ′ have the same row number
and column number, then C and C ′ have the same content (uniqueness requirement);

• for all multi-cell codes C and C ′ in w having the same row-number (respectively, column
number), column numbers (respectively, row numbers) j and j + 1, respectively, and
contents d1 · · · dn and d′1 · · · d′n, respectively, it holds that (d`, d

′
`) ∈ H (respectively

(d`, d
′
`) ∈ V) for all ` ∈ [1, n] (row-adjacency requirement) (respectively, (column-

adjacency requirement));

• there is a multi-cell code in w with row-number 2n − 1 whose content is in Dn−1 · dacc

for some dacc ∈ Dacc (acceptance requirement).

4This violates Definition 1, but we define the state end to have no successors only for convenience.

27

Finally, we encode the initial conditions of the components of a multi-tiling. An initial
cell code encodes a cell of the first row of a tiling and is a word w of length n + 1 having
the form w = d(c, b1) · · · (c, bn), where d ∈ D0 and b1, . . . , bn ∈ {0, 1}. We say that d is the
content of w and the integer in [0, 2n − 1] encoded by b1 · · · bn is the column number of w.

Definition 30 (Multi-initialization codes). An initialization code is a finite word w over AP
which is the concatenation of initial cell codes such that:

• for all i ∈ [0, 2n − 1], there is an initial cell code in w with column number i.

• for all initial cell codes C and C ′ occurring in w, if C and C ′ have the same column
number, then C and C ′ have the same content.

A multi-initialization code is a finite word over AP having the form ⊥ · wn · · · ⊥ · w1 · end
such that for all ` ∈ [1, n], w` is an initialization code.

Definition 31 (Initialized multi-tiling codes). An initialized multi-tiling code is a finite word
over AP having the form ⊥ · w · ⊥ · wn · · · ⊥ · w1 · end such that w is a multi-tiling code,
⊥ · wn · · · ⊥ · w1 · end is a multi-initialization code, and the following requirement holds:

• for each multi-cell code in w having row number 0, column number i, and content
d1 · · · dn and for all ` ∈ [1, n], there is an initial cell code in w` having column number
i and content d` (initialization coherence requirement).

Before proving Theorem 28, we sketch the idea for the construction of the BE formula ϕI
ensuring that KI |= ϕI if and only if I is a positive instance of the alternating multi-tiling
problem. We preliminarily observe that since the initial state of KI has no successors, the
only initial trace of KI is the trace end having length 1. To guess a trace corresponding to
an initialized multi-tiling code, KI is unraveled backward starting from end, exploiting the
modality E. The structure of the formula ϕI is

ϕI := [E](ϕ1 → 〈E〉(ϕ2 ∧ (. . . ([E](ϕn−1 → 〈E〉(ϕn ∧ 〈E〉ϕIMT))) . . .))).

It features n+ 1 unravelling steps starting from the initial trace end. The first n steps are
used to guess a sequence of n initialization codes. Intuitively, each formula ϕi is used to
constrain the i-th unravelling to be an initialization code, in such a way that at depth n in
the formula a multi-initialization code is under evaluation. The last unravelling step (the
innermost in the formula) is used to guess the multi-tiling code. The innermost formula
ϕIMT is evaluated over a trace corresponding to an initialized multi-tiling code, and checks its
structure: multi-cell codes are “captured” by regular expressions (encoding in particular their
row and column numbers and contents). The completeness, uniqueness, row- and column-
adjacency requirements for the multitiling of Definition 29 are enforced by the combined use
of the [E] modality and regular expressions. The intuition of the technique is graphically
depicted in Figure 7, where w is a multi-tiling code. Since the problem is to check constraints
between pairs of multi-cell codes occurring in arbitrary positions of w, we use the following
trick. A copy of two multi-cell codes C and C ′ (see Figure 7) are generated next to each

28

wn wn−1 w1⊥⊥ ⊥ . . .w

...[E]

C

C ′

⊥ ⊥
...

Figure 7: Checking constraints between pairs of multi-cell codes C and C ′ in an initialized multi-tiling code.

other, as backward extensions of the initialized multi-tiling code, by means of modality [E].
We then check that both C and C ′ occur in (arbitrary positions of) w, and, if it is the case,
the required constraint is checked against the generated copies C and C ′, taking advantage
of their adjacency.

The initialization coherence requirement of Definition 31 is guaranteed in an analogous
way, by comparing initial cell codes and multi-cell codes.

Note that the first n− 1 occurrences of alternations between universal and existential
modalities [E] and 〈E〉 correspond to the alternations of universal and existential quantifica-
tions in the definition of alternating multi-tiling problem.

The correctness of the construction of ϕI is stated by the next proposition.

Proposition 32. One can build, in time polynomial in the size of I, n + 1 BE formulas
ϕIMT, ϕ1, . . . , ϕn with Υ(ϕIMT) = Υ(ϕ1) = . . . = Υ(ϕn) = 0, fulfilling the following conditions:

• for all finite words ρ over AP having the form ρ = ρ′ · ⊥ · wn · · · ⊥ · w1 · end such that
ρ′ 6= ε and ⊥ · wn · · · ⊥ · w1 · end is a multi-initialization code, it holds KI , ρ |= ϕIMT if
and only if ρ is an initialized multi-tiling code;

• for all ` ∈ [1, n] and words ρ having the form ρ = ρ′ · ⊥ · w`−1 · · · ⊥ · w1 · end such that
ρ′ 6= ε and wj ∈ (AP \ {⊥})∗ for all j ∈ [1, `− 1], it holds KI , ρ |= ϕ` if and only if ρ′
has the form ρ′ = ⊥ · w`, where w` is an initialization code.

Proof. Since each state of the Kripke structure KI is labeled by exactly one proposition
letter of AP , in the proof we exploit the standard regular expressions, where atomic formulas
are single letters of AP . Evidently, a standard regular expression can be converted into a
propositional-based regular expression where each proposition letter p ∈ AP is replaced with
the formula p ∧

∧
p′∈AP\{p} ¬p′. Let us focus on the construction of the BE formula ϕIMT (as

ϕ1, . . . , ϕn are simpler). First, we define a BE formula ϕMT ensuring the following property:

• for all finite words ρ over AP having the form ρ = ρ′ · ⊥ ·wn · . . . · ⊥ ·w1 · end such that
ρ′ 6= ε and ⊥ · wn · . . . · ⊥ · w1 · end is a multi-initialization code, it holds KI , ρ |= ϕMT

if and only if ρ′ = ⊥ · w for some multi-tiling code w.

In order to build ϕMT, we need some auxiliary formulas.

• A regular expression rmc := Dn · ({r}×{0, 1})n · ({c}×{0, 1})n capturing the multi-cell
codes.

29

• A B formula ψcomp requiring that for each word C · ⊥ · C1 · . . . · CN · ⊥ such that
C,C1, . . . , CN are multi-cell codes, there is i ∈ [1, N] such that C and Ci have the same
row number and column number.

ψcomp := 〈B〉
(

(rmc · ⊥ · (rmc)
+) ∧

∧
i∈[1,n]

∨
b∈{0,1}

(APn+i−1 · (r, b) · AP + · (r, b) · AP 2n−i)∧∧
i∈[1,n]

∨
b∈{0,1}

(AP 2n+i−1 · (c, b) · AP + · (c, b) · APn−i)
)

• A propositional formula ψ= requiring that for each word having as a proper prefix
C · C ′ such that C and C ′ are multi-cell codes, C and C ′ have the same row number
and column number.

ψ= :=
∧

i∈[1,n]

∨
b∈{0,1}

(APn+i−1 · (r, b) · AP 3n−1 · (r, b) · AP +) ∧∧
i∈[1,n]

∨
b∈{0,1}

(AP 2n+i−1 · (c, b) · AP 3n−1 · (c, b) · AP +)

• A propositional formula ψr,inc (respectively, ψc,inc) requiring that for each word having
as a proper prefix C · C ′ such that C and C ′ are multi-cell codes, C and C ′ have the
same column number (respectively, the same row number), and there is h ∈ [0, 2n − 2]
such that C and C ′ have row numbers (respectively, column numbers) h and h + 1,
respectively. We consider the formula ψr,inc (the definition of ψc,inc is similar).

ψr,inc :=
∧

i∈[1,n]

∨
b∈{0,1}

(AP 2n+i−1 · (c, b) · AP 3n−1 · (c, b) · AP +) ∧∨
i∈[1,n]

(∧
j∈[1,i−1]

(APn+j−1 · (r, 1) · AP 3n−1 · (r, 0) · AP +) ∧

(APn+i−1 · (r, 0) · AP 3n−1 · (r, 1) · AP +) ∧∧
j∈[i+1,n]

∨
b∈{0,1}

(APn+j−1 · (r, b) · AP 3n−1 · (r, b) · AP +)
)

• A B formula ψdouble requiring that for each word C · C ′ · ⊥ · C1 · . . . · CN · ⊥ such that
C,C ′, C1, . . . , CN are multi-cell codes, there are i, j ∈ [1, N] such that C = Ci and
C ′ = Cj; ψdouble := θ ∧ θ′, where θ (respectively, θ′) requires that there is i ∈ [1, N]
such that Ci = C (respectively, Ci = C ′). We consider θ′ (the definition of θ is similar).

θ′ := 〈B〉
(

(rmc · rmc · ⊥ · (rmc)
+) ∧

∧
i∈[1,n]

∨
d∈D

(AP 3n+i−1 · d · AP + · d · AP 3n−i) ∧∧
i∈[1,n]

∨
b∈{0,1}

(AP 4n+i−1 · (r, b) · AP + · (r, b) · AP 2n−i) ∧∧
i∈[1,n]

∨
b∈{0,1}

(AP 5n+i−1 · (c, b) · AP + · (c, b) · APn−i)
)

30

• A B formula ψnot_unique requiring that for each word C · C ′ · ⊥ · C1 · . . . · CN · ⊥ such
that C,C ′, C1, . . . , CN are multi-cell codes, the following properties hold:

– C and C ′ have the same row number and column number, but different content;

– there are i, j ∈ [1, N] such that C = Ci and C ′ = Cj.

The construction of ψnot_unique is based on the formulas ψdouble and ψ=:

ψnot_unique := ψdouble ∧ ψ= ∧
∨

i∈[1,n]

∨
d,d′∈D:d6=d′

(AP i−1 · d · AP 3n−1 · d′ · AP +).

• A B formula ψrow (respectively, ψcol) requiring that for each word C ·C ′ ·⊥·C1 ·. . .·CN ·⊥
such that C,C ′, C1, . . . , CN are multi-cell codes, the following condition holds.

– Let us denote by d1 · · · dn the content of C and by d′1 · · · d′n the content of C ′.
Whenever (1) there are i, j ∈ [1, N] such that C = Ci and C ′ = Cj, and (2) C
and C ′ have the same row number and column numbers h and h+ 1, respectively
(respectively, C and C ′ have the same column number and row numbers h and
h + 1, respectively) for some h ∈ [0, 2n − 2], then it holds that (d`, d

′
`) ∈ H

(respectively, (d`, d
′
`) ∈ V), for all ` ∈ [1, N].

We focus on ψrow (the definition of ψcol is similar):

ψrow := (ψdouble ∧ ψc,inc) −→
∧

i∈[1,n]

∨
(d,d′)∈H

(AP i−1 · d · AP 3n−1 · d′ · AP +).

Finally, the BE formula ϕMT is defined as follows:

¬(AP ∗ · ⊥ · AP ∗)n+2 ∧ 〈B〉
(

(⊥ · (rmc)
+ · ⊥) ∧ ¬

∨
(d,d′)∈D2\M

(AP + · d · d′ · AP +)

︸ ︷︷ ︸
Concatenation of well-formed multi-cell codes

∧

[E]((rmc · ⊥ · (rmc)
+ · ⊥) −→ ψcomp)︸ ︷︷ ︸

Completeness requirement of Definition 29

∧ [E]((rmc · rmc · ⊥ · (rmc)
+ · ⊥) −→ ¬ψnot_unique)︸ ︷︷ ︸

Uniqueness requirement of Definition 29

∧

[E]((rmc · rmc · ⊥ · (rmc)
+ · ⊥) −→ (ψrow ∧ ψcol))︸ ︷︷ ︸

Row-adjacency and column-adjacency requirements of Definition 29

∧
∨

dacc∈Dacc

(AP + · dacc · (r, 1)n · AP +)︸ ︷︷ ︸
Acceptance requirement of Definition 29

)
.

The BE formula ϕIMT is given by ϕMT∧ϕcoh, where ϕcoh ensures the initialization coherence
requirement of Definition 31. In order to define ϕcoh, we need some auxiliary formulas.

• A regular expression ric := D0 · ({c} × {0, 1})n capturing the initial cell codes.

31

• A B formula ψsingle requiring that for each word C · ⊥ · C1 · . . . · CN · ⊥ such that
C,C1, . . . , CN are multi-cell codes, there is i ∈ [1, N] such that C = Ci and the row
number of C is 0. The definition of ψsingle is similar to the definition of ψdouble.

• A B formula ψcoh requiring that for each word C ·⊥ ·C1 · . . . ·CN ·⊥ ·wn · . . . ·⊥ ·w1 · end
such that C,C1, . . . , CN are multi-cell codes and ⊥ · wn · . . . · ⊥ · w1 · end is a multi-
initialization code, the following constraint holds: if there is i ∈ [1, N] such that C = Ci,
the row number of C is 0 and the content of C is d1 . . . dn, then for all ` ∈ [1, n], there
exists an initial code in w` having the same column number as C and content d`.

ψcoh :=
(
〈B〉([(AP \ {⊥})+ · ⊥ · (AP \ {⊥})+ · ⊥] ∧ ψsingle)

)
−→

∧
`∈[1,n]

ψ`;

ψ` := 〈B〉
([

(AP \ {⊥})+ · (⊥ · (AP \ {⊥})+)n−`+1 · ⊥ · r+
ic

]
∧∧

i∈[1,n]

∨
b∈{0,1}

(AP 2n+i−1 · (c, b) · AP + · (c, b) · APn−i) ∧
∨
d∈D

(AP `−1 · d · AP + · d · APn)
)

The BE formula ϕcoh is then ϕcoh := [E]
(
[rmc · (⊥ · (AP \ {⊥})+)n+1]→ ψcoh

)
.

This concludes the proof of Proposition 32.

Now recall that ϕI := [E](ϕ1 → 〈E〉(ϕ2 ∧ (. . . ([E](ϕn−1 → 〈E〉(ϕn ∧ 〈E〉ϕIMT))) . . .))),
where ϕIMT, ϕ1, . . . , ϕn are the formulas defined in Proposition 32. Since the initial state of
KI has no successors and the only initial trace has length 1 and corresponds to the proposition
letter end, by Definitions 29–31, we have that KI |= ϕI if and only if I is a positive instance
of the alternating multi-tiling problem, proving Theorem 28. Now, this result combined with
Theorem 24, implies the following complexity result.

Corollary 33. The MC problem for AABBE (and AAEBE) formulas over finite Kripke
structures is AEXPpol-complete.

6. The Fragments AABB and AAEE

In this section we show that the two symmetric fragments AABB and AAEE feature a
better complexity, proving MC for them to be in PSPACE. To this end we first prove, in
Section 6.1, that they enjoy an exponential small-model property, that is, if a trace ρ of a
finite Kripke structure K satisfies a formula ϕ of AABB/AAEE, then there is always a trace
π, whose length is exponential in |ϕ| and |K |, that still satisfies ϕ. Therefore, without loss of
generality, one can limit the verification of traces of K to those having at most exponential
length. It is worth recalling that, in [6], we proved a polynomial small-model property in
the sizes of the AABB/AAEE formula ϕ and the Kripke structure K under the homogeneity
assumption.

Then, in Sections 6.2 and 6.3 we provide a PSPACE MC algorithm which exploits
the exponential small-model property. Such an algorithm is completely different from the
one presented in [6] for the MC problem of the same fragments, under the homogeneity

32

assumption, which can exploit the aforementioned polynomial small-model property. As
a matter of fact, unlike that of [6], this algorithm cannot store even a single—possibly
exponential-length—trace, being bound to use polynomial working space. For this reason it
visits the (exponential-length) traces of the input Kripke structure K by means of a binary
reachability technique that allows it to use logarithmic space in the length of traces, hence
guaranteeing the PSPACE complexity upper bound. The surprising fact is that both the
algorithm of [6] and the one presented here use polynomial working space, thus showing
that relaxing the homogeneity assumption comes at no additional computational cost for the
fragments AABB and AAEE.

Finally, in Section 6.3 we prove the PSPACE-completeness of MC for AABB and AAEE.

6.1. Exponential Small-Model Property for AABB and AAEE

In this section we prove the exponential small-model property for the fragments AABB
and AAEE (actually, we focus only on AABB being the case for AAEE symmetric).

Given a DFA D = (Σ, Q, q0, δ, F), we denote by D(w) (resp., Dq(w)) the state reached
by the computation of D from q0 (resp., q ∈ Q) over the word w ∈ Σ∗. We now consider
well-formedness of induced traces (recall Definition 22) w.r.t. a set of DFAs: a well formed
trace π induced by ρ preserves the states of the computations of the DFAs reached by reading
prefixes of ρ and π bounded by corresponding positions.

Definition 34 (Well-formed trace). Let K = (AP , S,R, µ, s0) be a finite Kripke structure,
ρ ∈ TrcK be a trace, and Ds = (2AP , Qs, qs0, δ

s, F s) with s = 1, . . . , k, be DFAs. A trace
π ∈ TrcK induced by ρ is (q1

`1
, . . . , qk`k)-well-formed w.r.t. ρ, with qs`s ∈ Q

s for all s = 1, . . . , k,
if and only if:

• for all π-positions j, with corresponding ρ-positions ij, and all s = 1, . . . , k, it holds
that Dsqs`s (µ(πj)) = Dsqs`s (µ(ρij)).

It is easy to see that, for qs`s ∈ Q
s, s = 1, . . . , k, the (q1

`1
, . . . , qk`k)-well-formedness relation

is transitive.
Now it is possible to show that a trace whose length exceeds a suitable exponential

threshold, induces a shorter, well-formed trace. Such a contraction pattern (Proposition 35)
represents a “basic step” in a contraction process which will allow us to prove the exponential
small-model property for AABB.

Let us consider an AABB formula ϕ and let r1, . . . , rk be the RE’s over AP in ϕ. Let
D1, . . . ,Dk be the DFAs such that L(Dt) = L(rt), for t = 1, . . . , k, where |Qt| ≤ 22|rt| (see
Remark 3). We denote Q1 × . . .×Qk by Q(ϕ), and D1, . . . ,Dk by D(ϕ).

Proposition 35. Let K = (AP , S,R, µ, s0) be a finite Kripke structure, ϕ be an AABB
formula with RE’s r1, . . . , rk over AP , ρ ∈ TrcK be a trace, and (q1, . . . , qk) ∈ Q(ϕ). There
exists a trace π ∈ TrcK , which is (q1, . . . , qk)-well-formed w.r.t. ρ, such that |π| ≤ |S| ·
22

∑k
`=1 |r`|.

33

ρ

π = ρ(1,l1)?ρ(l2, n)

ρ(l1)=ρ(l2)= s

∀t, Dt
qt

(µ(ρl1)) = Dt
qt

(µ(ρl2))

Figure 8: The contraction step of Proposition 35.

Proof. Let ρ ∈ TrcK with |ρ| = n. If n ≤ |S| ·22
∑k
`=1 |r`|, the thesis trivially holds. Thus, let us

assume n > |S| ·22
∑k
`=1 |r`|. We show that there exists a trace which is (q1, . . . , qk)-well-formed

w.r.t. ρ, whose length is smaller than n. The number of possible (joint) configurations of the
DFAs D(ϕ) is (at most) |Q(ϕ)| ≤ 22|r1| · · · 22|rk| = 22

∑k
`=1 |r`|. Since n > |S| · 22

∑k
`=1 |r`|, there

exists some state s ∈ S occurring in ρ at least twice in the ρ-positions say 1 ≤ l1 < l2 ≤ |ρ|,
such that Dtqt(µ(ρl1)) = Dtqt(µ(ρl2)), for all t = 1, . . . , k. Let us consider π = ρ(1, l1) ? ρ(l2, n)
(see Figure 8). It is easy to see that π ∈ TrcK , as ρ(l1) = ρ(l2), and |π| < n. Moreover,
π is (q1, . . . , qk)-well-formed w.r.t. ρ (the corresponding positions are ij = j if j ≤ l1, and
ij = j + (l2 − l1) otherwise). Now, if |π| ≤ |S| · 22

∑k
`=1 |r`|, the thesis holds. Otherwise, the

same basic step can be iterated a finite number of times: the thesis follows by transitivity of
the (q1, . . . , qk)-well-formedness relation.

The next step is to determine some conditions for contracting traces while preserving
the equivalence w.r.t. the satisfiability of the considered AABB formula. In the following, we
restrict ourselves to formulas in NNF. For a trace ρ and a formula ϕ of AABB (in NNF), we
fix some special ρ-positions, called witness positions, each one corresponding to the minimal
prefix of ρ which satisfies a formula ψ occurring in ϕ as a subformula of the form 〈B〉ψ
(provided that 〈B〉ψ is satisfied by ρ). As we will see in the proof of Theorem 37, when a
contraction is performed in between a pair of consecutive witness positions (thus no witness
position is ever removed), we get a trace induced by ρ (according to Definition 22) equivalent
w.r.t. the satisfiability of ϕ.

Definition 36 (Witness positions). Let ρ be a trace of K and ϕ be a formula of AABB.
Let us denote by B(ϕ, ρ) the set of subformulas 〈B〉ψ of ϕ such that K , ρ |= 〈B〉ψ. The
set Wt(ϕ, ρ) of witness positions of ρ for ϕ is the minimal set of ρ-positions satisfying the
following constraint: for each 〈B〉ψ ∈ B(ϕ, ρ), the smallest ρ-position i < |ρ| such that
K , ρi |= ψ belongs to Wt(ϕ, ρ).5

Clearly, the cardinality of B(ϕ, ρ) and of Wt(ϕ, ρ) is at most |ϕ|− 1. We are finally ready
to prove the exponential small-model property for AABB.

Theorem 37 (Exponential small-model for AABB). Let K = (AP , S,R, µ, s0), σ, ρ ∈ TrcK ,
and ϕ be an AABB formula in NNF, with RE’s r1, . . . , ru over AP , such that K , σ ? ρ |= ϕ.

5Note that such a ρ-position exists by definition of B(ϕ, ρ).

34

ρ

π=ρ(1,it)?π
′?ρ(it+1, |ρ|)

i1 it it+1 ij

〈B〉ψ1 〈B〉ψt 〈B〉ψt+1 〈B〉ψj

π′

ρ′

Figure 9: Representation of the contraction step of Theorem 37—case (i)

Then, there exists π ∈ TrcK , induced by ρ, such that K , σ ? π |= ϕ and |π| ≤ |S| · (|ϕ|+ 1) ·
22

∑u
`=1 |r`|.

The theorem holds in particular if |σ| = 1, and thus σ ? ρ = ρ and σ ? π = π. In this case,
if K , ρ |= ϕ, then K , π |= ϕ, where π is induced by ρ and |π| ≤ |S| · (|ϕ|+ 1) · 22

∑u
`=1 |r`|. The

more general assertion is needed for technical reasons (in the soundness/completeness proof
of the next algorithms, see Theorem 40).

Proof. Let Wt(ϕ, σ ? ρ) be the set of witness positions of σ ? ρ for ϕ. Let {i1, . . . , ik} be
the ordering of Wt(ϕ, σ ? ρ) such that i1 < . . . < ik. Let i0 = 1 and ik+1 = |σ ? ρ|. Hence,
1 = i0 ≤ i1 < . . . < ik < ik+1 = |σ ? ρ|. If the length of ρ is at most |S| · (|ϕ|+ 1) · 22

∑u
`=1 |r`|,

the thesis trivially holds. Let us assume that |ρ| > |S| · (|ϕ|+ 1) · 22
∑u
`=1 |r`|. We show that

there exists a trace π induced by ρ, with |π| < |ρ|, such that K , σ ? π |= ϕ.
W.l.o.g., we can assume that i0 ≤ i1 < . . . < ij−1, for some j ≥ 1, are σ-positions (while

ij < . . . < ik+1 are (σ ? ρ)-positions not in σ). We claim that either (i) there exists t ∈ [j, k]
such that it+1 − it > |S| · 22

∑u
`=1 |r`| or (ii) |(σ ? ρ)(|σ|, ij)| > |S| · 22

∑u
`=1 |r`|. By way of

contradiction, suppose that neither (i) nor (ii) holds. We need to distinguish two cases. If
σ ? ρ = ρ, then |ρ| = (ik+1− i0) + 1 ≤ (k+ 1) · |S| · 22

∑u
`=1 |r`| + 1 (a contradiction); otherwise

(|ρ| < |σ ? ρ|), |ρ| = (ik+1 − ij) + |(σ ? ρ)(|σ|, ij)| ≤ k · |S| · 22
∑u
`=1 |r`| + |S| · 22

∑u
`=1 |r`| ≤

(k + 1) · |S| · 22
∑u
`=1 |r`|. The contradiction follows since (k + 1) · |S| · 22

∑u
`=1 |r`| + 1 ≤

|ϕ| · |S| · 22
∑u
`=1 |r`| + 1 ≤ |S| · (|ϕ|+ 1) · 22

∑u
`=1 |r`|.

Let us define (α, β) = (it, it+1) in case (i), and (α, β) = (|σ|, ij) in case (ii). Moreover let
ρ′ = ρ(α, β). In both the cases, we have |ρ′| > |S|·22

∑u
`=1 |r`|. By Proposition 35, there exists a

trace π′ of K , (q1, · · · , qu)-well-formed with respect to ρ′, such that |π′| ≤ |S|·22
∑u
`=1 |r`| < |ρ′|,

where we choose qx = Dx(µ((σ ? ρ)α−1)) for x = 1, . . . , u (as a particular case we set qx as
the initial state of Dx if α = 1). Let π be the trace induced by ρ obtained by replacing the
subtrace ρ′ of ρ with π′ (see Figure 9). Since |π| < |ρ|, it remains to prove that K , σ ? π |= ϕ.

Let us denote σ ? π by π and σ ? ρ by ρ. Moreover, let H : [1, |π|] → [1, |ρ|] be the
function mapping positions of π into positions of ρ in this way: positions “outside” π′ (i.e.,
outside the interval [α, α + |π′| − 1]) are mapped into their original position in ρ; positions
“inside” π′ (i.e., in [α, α+ |π′|− 1]) are mapped to the corresponding position in ρ′ (exploiting

35

well-formedness of π′ w.r. to ρ′). Formally, H is defined as:

H(m) =


m if m < α

α + `m−α+1 − 1 if α ≤ m < α + |π′|
m+ (|ρ′| − |π′|) if m ≥ α + |π′|

(1)

where `m is the ρ′-position corresponding to the π′-position m. It is easy to check that H
satisfies the following properties:

1. H is strictly monotonic, i.e., for all j, j′ ∈ [1, |π|], j < j′ iff H(j) < H(j′);
2. for all j ∈ [1, |π|], π(j) = ρ(H(j));
3. H(1) = 1 and H(|π|) = |ρ|;
4. Wt(ϕ, ρ) ⊆ {H(j) | j ∈ [1, |π|]};
5. for each j ∈ [1, |π|] and x = 1, . . . , u, Dx(µ(πj)) = Dx(µ(ρH(j))).

We only comment on Property 5. The property holds for j ∈ [1, α−1], as πj = ρH(j) = ρj . For
j ∈ [α, α + |π′| − 1], Dx(µ(πj)) = Dx(µ(ρH(j))) follows from the well-formedness hypothesis.
Finally, being ρ(β, |ρ|) = π(α+ |π′| − 1, |π|) and Dx(µ(πα+|π′|−1)) = Dx(µ(ρβ)), the property
holds also for j ∈ [α + |π′|, |π|].

The statement K , π |= ϕ is an immediate consequence of the following claim, considering
that H(|π|) = |ρ|, K , ρ |= ϕ, ρ|ρ| = ρ, and π|π| = π.
Claim 38. For all j ∈ [1, |π|], all subformulas ψ of ϕ, and all ξ ∈ TrcK ,

K , ρH(j) ? ξ |= ψ =⇒ K , πj ? ξ |= ψ.

Proof. Assume that K , ρH(j) ? ξ |= ψ. Note that ρH(j) ? ξ is defined if and only if πj ? ξ is
defined. We prove by induction on the structure of ψ that K , πj ? ξ |= ψ. Since ϕ is in NNF,
only the following cases can occur.

(Base) case ψ = rt or ψ = ¬rt where rt is some RE over AP . By Property 5 of H,
Dt(µ(πj)) = Dt(µ(ρH(j))), thus Dt(µ(πj ? ξ)) = Dt(µ(ρH(j) ? ξ)). It follows that K , πj ? ξ |= rt
if and only if K , ρH(j) ? ξ |= rt, and the result holds.
Case ψ = θ1 ∧ θ2 or ψ = θ1 ∨ θ2. The result holds by the inductive hypothesis.
Case ψ = [B]θ. We need to show that for each proper prefix η of πj ? ξ, we have K , η |= θ.
We distinguish two cases:

• η is not a proper prefix of πj. Hence, η has the form πj ? ξh for some h ∈ [1, |ξ| − 1].
Since K , ρH(j) ? ξ |= [B]θ, then K , ρH(j) ? ξh |= θ. By the inductive hypothesis, we have
K , πj ? ξh |= θ.

• η is a proper prefix of πj. Hence, η = πh for some h ∈ [1, j − 1]. By Property 1 of
H, H(h) < H(j), and since K , ρH(j) ? ξ |= [B]θ, we have that K , ρH(h) |= θ. By the
inductive hypothesis, K , πh |= θ.

Case ψ = 〈B〉 θ. We have to show that there exists a proper prefix of πj ? ξ satisfying θ.
Since K , ρH(j) ? ξ |= ψ, there exists a proper prefix η′ of ρH(j) ? ξ such that K , η′ |= θ. We
distinguish two cases:

36

• η′ is not a proper prefix of ρH(j). Hence, η′ is of the form ρH(j)?ξh for some h ∈ [1, |ξ|−1].
By the inductive hypothesis, K , πj ? ξh |= θ, and K , πj ? ξ |= 〈B〉 θ.

• η′ is a proper prefix of ρH(j). Hence, η′ = ρi for some i ∈ [1, H(j)− 1], and K , ρi |= θ.
Let i′ be the smallest position of ρ such that K , ρi

′ |= θ. Hence i′ ≤ i and, by
Definition 36, i′ ∈ Wt(ϕ, ρ). By Property 4 of H, i′ = H(h) for some π-position h.
Since H(h) < H(j), it holds that h < j (Property 1). By the inductive hypothesis,
K , πh |= θ, and K , πj ? ξ |= 〈B〉 θ.

Cases ψ = [B]θ or ψ = 〈B〉 θ. The thesis directly follows from the inductive hypothesis.
Cases ψ = [A]θ, ψ = 〈A〉 θ, ψ = [A]θ or ψ = 〈A〉 θ. Since πj ? ξ and ρH(j) ? ξ start at the
same state and lead to the same state (by Property 2 and 3 of H), the result trivially follows,
concluding the proof of the claim.

We have shown that K , π |= ϕ, with |π| < |ρ|. If |π| ≤ |S| · (|ϕ|+ 1) · 22
∑u
`=1 |r`|, the thesis

holds. Otherwise, we can iterate the above contraction a finite number of times until the
bound is reached.

The proved exponential small-model property allows us to devise a trivial exponential
working space algorithm for AABB (and AAEE) (actually we shall present a polynomial
space one in the next sections), which basically unravels the Kripke structure and checks
all the subformulas of the input formula. At every step it can consider traces not longer
than O(|S| · |ϕ| · 22

∑u
`=1 |r`|). Conversely, the following example shows that the exponential

small-model is strict, that is, there exists a formula and a Kripke structure, such that the
shortest trace satisfying the formula has exponential length in the size of the formula itself.
This is the case even for pure propositional formulas.

Example 39. Let pri be the i-th smallest prime number. It is well-known that pri ∈ O(i log i).
Let w⊗k denote the string obtained by concatenating k times w. Let us fix some n ∈ N, and
let K = ({p}, {s},R, µ, s) be the trivial Kripke structure having only one state with a self-
loop, where R = {(s, s)}, and µ(s) = {p}. The shortest trace satisfying ψ =

∧n
i=1(p⊗(pri))∗ is

ρ = s⊗(pr1···prn), since its length is the least common multiple of pr1, . . . , prn, which is indeed
pr1 · · · prn. It is immediate to check that the length of ψ is O(n · prn) = O(n2 log n). On the
other hand, the length of ρ is pr1 · · · prn ≥ 2n.

In the following, we will exploit the exponential small-model property of the two symmet-
rical fragments AABB and AAEE to prove the PSPACE-completeness of their MC problems.
First, in Section 6.2, we will provide a PSPACE MC algorithm for BB (resp., EE). Then,
in Section 6.3, we will show that the meets and met-by modalities A and A can be suitably
encoded by regular expressions without increasing the complexity of BB (resp., EE).

6.2. PSPACE-membership of MC for BB

In this section, to start with, we describe a PSPACE MC algorithm for BB formulas.
W.l.o.g., we assume that the processed formulas do not contain occurrences of the universal
modalities [B] and [B]. Moreover, for a formula ψ, we denote by Subf〈B〉(ψ) = {ϕ |

37

〈B〉ϕ is a subformula of ψ}. In such an algorithm, Φ represents the overall formula to be
checked, while the parametric formula ψ ranges over its subformulas.

Due to the result of the previous section, the algorithm can consider only traces having
length bounded by the exponential small-model property. Note that an algorithm required to
work in polynomial space cannot explicitly store the DFAs for the regular expressions occurring
in Φ (their states are exponentially many in the length of the associated regular expressions).
For this reason, while checking a formula against a trace, the algorithm just stores the current
states of the computations of the DFAs associated with the regular expressions in Φ, from
the respective initial states (in the following such states are denoted—with a little abuse of
notation—again by D(Φ), and called the “current configuration” of the DFAs) and calculates
on-the-fly the successor states in the DFAs, once they have read some state of K used to
extend the considered trace (this can be done by exploiting a succinct encoding of the NFAs
for the regular expressions of Φ, see Remark 3 in Section 2).

A call to the recursive procedure Check(K , ψ, s,G,D(Φ)) (Algorithm 3) checks the
satisfiability of a subformula ψ of Φ w.r.t. any trace ρ fulfilling the following conditions:

1. G ⊆ Subf〈B〉(ψ) is the set of formulas that hold true on at least a prefix of ρ;
2. after reading µ(ρ(1, |ρ| − 1)) the current configuration of the DFAs for the regular

expressions of Φ is D(Φ);
3. the last state of ρ is s.

Intuitively, since the algorithm cannot store the already checked portion of a trace (whose
length could be exponential), the relevant information is summarized in a triple (G,D(Φ), s).
Hereafter the set of all possible summarizing triples (G,D(Φ), s), where G ⊆ Subf〈B〉(ψ),
D(Φ) is any current configuration of the DFAs for the regular expressions of Φ, and s is a
state of K , is denoted by Conf(K , ψ).

Let us consider in detail the body of the procedure. First advance(D(Φ), µ(s)), invoked
at line 2, updates the current configuration of the DFAs after reading the symbol µ(s). If
ψ is a regular expression r (lines 1–5), we just check whether the (computation of the)
DFA associated with r is in a final state (i.e., the summarized trace is accepted). Boolean
connectives are easily dealt with recursively (lines 6–9). If ψ has the form 〈B〉ψ′ (lines 10–14),
then ψ′ has to hold over a proper prefix of the summarized trace, i.e. ψ′ must belong to G.

The only involved case is ψ = 〈B〉ψ′ (lines 15–19): we have to unravel the Kripke structure
K to find an extension ρ′ of ρ, summarized by the triple (G′,D(Φ)′, s′), satisfying ψ′. The
idea is checking whether or not there exists a summarized trace (G′,D(Φ)′, s′), suitably
extending (G,D(Φ), s), namely, such that:

1. D(Φ)′ and s′ are synchronously reachable from D(Φ) and s, respectively;
2. G′ ⊇ G contains any formula of Subf〈B〉(ψ′) satisfied by a prefix of the extension;
3. the extension (G′,D(Φ)′, s′) satisfies ψ′.

In order to check point (1), i.e., synchronous reachability, we can exploit the exponential
small-model property and consider only the unravelling of K starting from s having depth at
most |S| · (2|ψ′|+ 1) · 22

∑u
`=1 |r`|− 16. The check of (1) and (2) is performed by the procedure

6 The factor 2 of |ψ′| is added since the exponential small-model for AABB requires a formula in NNF.

38

Algorithm 3 Check(K , ψ, s,G,D(Φ))
1: if ψ = r then / r is a regular expression
2: if the current state of the DFA for r in advance(D(Φ), µ(s)) is final then
3: return >
4: else
5: return ⊥
6: else if ψ = ¬ψ′ then
7: return not Check(K , ψ′, s,G,D(Φ))
8: else if ψ = ψ1 ∧ ψ2 then
9: return Check(K , ψ1, s,G ∩ Subf〈B〉(ψ1),D(Φ)) and Check(K , ψ2, s,G ∩ Subf〈B〉(ψ2),D(Φ))
10: else if ψ = 〈B〉ψ′ then
11: if ψ′ ∈ G then
12: return >
13: else
14: return ⊥
15: else if ψ = 〈B〉ψ′ then
16: for each b ∈ {1, . . . , |S| · (2|ψ′|+ 1) · 22

∑u
`=1 |r`|− 1} and each (G′,D(Φ)′, s′) ∈ Conf(K , ψ) do

/ r1, . . . , ru are the regular expressions of ψ′

17: if Reach(K , ψ′, (G,D(Φ), s), (G′,D(Φ)′, s′), b) and Check(K , ψ′, s′, G′,D(Φ)′) then
18: return >
19: return ⊥

Reach (Algorithm 4), which accepts as input two summarized traces and a bound b on the
depth of the unravelling of K . The proposed reachability algorithm is reminiscent of the
binary reachability of Savitch’s theorem [17].

The procedure Reach proceeds recursively (lines 3–8) by halving at each step the value b
of the length bound, until it gets called over two states s1 and s2 which are adjacent in a
trace. At each halving step, an intermediate summarizing triple is generated to be associated
with the split point. At the base of recursion (for b = 1, lines 1–2), the auxiliary procedure
Compatible (Algorithm 5) is invoked. At line 1, Compatible checks whether there is an edge
between s1 and s2 ((s1, s2) ∈ R), and if, at the considered step, the current configuration
of the DFAs D(Φ)1 is transformed into the configuration D(Φ)2 (i.e., s2 and D(Φ)2 are
synchronously reachable from s1 and D(Φ)1). At lines 2–9, Compatible checks that each
formula ϕ in (G2 \G1), where G2 ⊇ G1, is satisfied by a trace summarized by (G1,D(Φ)1, s1)
(lines 2–5). Intuitively, (G1,D(Φ)1, s1) summarizes the maximal prefix of (G2,D(Φ)2, s2),
and thus a subformula satisfied by a prefix of a trace summarized by (G2,D(Φ)2, s2) either
belongs to G1 or it is satisfied by the trace summarized by (G1,D(Φ)1, s1). Moreover, (lines
6–9) Compatible checks that G2 is maximal (i.e., no subformula that must be in G2 has been
forgot). Note that by exploiting this binary reachability technique, the recursion depth of
Reach is logarithmic in the length of the trace to be visited, hence it can use only polynomial
space. Theorem 40 establishes the soundness of procedure Check.

Theorem 40. Let Φ be a BB formula, ψ be a subformula of Φ, and ρ ∈ TrcK be a trace with
s = lst(ρ). Let G be the subset of formulas in Subf〈B〉(ψ) that hold on some proper prefix of

39

Algorithm 4 Reach(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2), b)
1: if b = 1 then
2: return Compatible(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2))
3: else / b ≥ 2

4: b′ ← bb/2c
5: for each (G3,D(Φ)3, s3) ∈ Conf(K , ψ) do
6: if Reach(K , ψ, (G1,D(Φ)1, s1), (G3,D(Φ)3, s3), b′) and Reach(K , ψ, (G3,D(Φ)3, s3), (G2,D(Φ)2, s2), b− b′) then
7: return >
8: return ⊥

Algorithm 5 Compatible(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2))
1: if (s1, s2) ∈ R and advance(D(Φ)1, µ(s1)) = D(Φ)2 and G1 ⊆ G2 then
2: for each ϕ ∈ (G2 \G1) do
3: G← G1 ∩ Subf〈B〉(ϕ)
4: if Check(K , ϕ, s1, G,D(Φ)1) = ⊥ then
5: return ⊥
6: for each ϕ ∈ (Subf〈B〉(ψ) \G2) do
7: G← G1 ∩ Subf〈B〉(ϕ)
8: if Check(K , ϕ, s1, G,D(Φ)1) = > then
9: return ⊥
10: return >
11: else
12: return ⊥

40

ρ. Let D(Φ) be the current configuration of the DFAs associated with the regular expressions
in Φ after reading µ(ρ(1, |ρ| − 1)). Then, Check(K , ψ, s,G,D(Φ)) = > ⇐⇒ K , ρ |= ψ.

Proof. The proof is by induction on the structure of ψ. The thesis trivially follows for the
cases ψ = r (regular expression), ψ = ¬ψ′, ψ = ψ1 ∧ ψ2, and ψ = 〈B〉ψ′.

Let us now assume ψ = 〈B〉ψ′. Check(K , ψ, s,G,D(Φ)) = > if and only if, for some b′′ ∈
{1, . . . , |S| ·(2|ψ′|+1) ·22

∑u
`=1 |r`|−1} and some (G′′,D(Φ)′′, s′′) ∈ Conf(K , ψ) (= Conf(K , ψ′)),

we have Reach(K , ψ′, (G,D(Φ), s),(G′′,D(Φ)′′, s′′), b′′)=> and Check(K , ψ′, s′′, G′′,D(Φ)′′)=
>. We preliminarily prove the following claim.
Claim 41. Let b ∈ N, b > 0. Let ρ̃ ∈ TrcK be a trace with s̃ = lst(ρ̃). Let G̃ be the subset
of formulas in Subf〈B〉(ψ

′) that hold on some proper prefix of ρ̃. Let D̃(Φ) be the current
configuration of states of the DFAs associated with the regular expressions in Φ, reached
from the initial states after reading µ(ρ̃(1, |ρ̃| − 1)).

For (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′) ∈ Conf(K , ψ′), we have that Reach(K , ψ′, (G̃, D̃(Φ), s̃),
(G′,D(Φ)′, s′), b) = > if and only if there exists ρ′ ∈ TrcK such that ρ̃ · ρ′ ∈ TrcK , |ρ′| = b,
lst(ρ′) = s′, G′ is the subset of formulas in Subf〈B〉(ψ

′) that hold on some proper prefix of ρ̃ ·ρ′,
and D(Φ)′ is the current configuration of the DFAs associated with the regular expressions of
Φ, after reading µ(ρ̃ · ρ′(1, |ρ̃ · ρ′| − 1)).

Proof. The proof is by induction on b ≥ 1.
If b = 1, we have Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′), b) = > iff Compatible(K , ψ′,

(G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′)) = >. This happens if and only if:

1. (s̃, s′) ∈ R, i.e., (s̃, s′) is an edge of K ;
2. advance(D̃(Φ), µ(s̃)) = D(Φ)′;
3. G̃ ⊆ G′;
4. for each ϕ ∈ (G′ \ G̃), Check(K , ϕ, s̃, G̃ ∩ Subf〈B〉(ϕ), D̃(Φ)) = >;
5. for each ϕ ∈ (Subf〈B〉(ψ

′) \G′), Check(K , ϕ, s̃, G̃ ∩ Subf〈B〉(ϕ), D̃(Φ)) = ⊥.

Let ρ′ = s′. (⇒) By the inductive hypothesis (of the external theorem over ρ̃), by point 4. it
follows that K , ρ̃ |= ϕ for each ϕ ∈ (G′ \ G̃). By point 5. it follows that K , ρ̃ 6|= ϕ for each
ϕ ∈ (Subf〈B〉(ψ

′) \G′) and the claim follows.
Conversely, (⇐) points 1., 2., and 3. easily follow. Moreover, it must hold that K , ρ̃ |= ϕ

for each ϕ ∈ (G′ \ G̃), and K , ρ̃ 6|= ϕ for each ϕ ∈ (Subf〈B〉(ψ
′) \G′) and, therefore, points 4.

and 5. follow by the inductive hypothesis (of the external theorem).
If b ≥ 2, Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′), b) = > if and only if, for some

(G3,D(Φ)3, s3) ∈ Conf(K , ψ′), Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G3,D(Φ)3, s3), bb/2c) = > and
Reach(K , ψ′, (G3,D(Φ)3, s3), (G′,D(Φ)′, s′), b− bb/2c) = >.

(⇒) By the inductive hypothesis (over b), there exists ρ3 ∈ TrcK such that ρ̃ · ρ3 ∈ TrcK ,
|ρ3| = bb/2c, lst(ρ3) = s3, G3 is the subset of subformulas in Subf〈B〉(ψ

′) that hold on some
proper prefix of ρ̃ · ρ3, and D(Φ)3 is the current configuration of the DFAs associated with
the regular expressions in Φ, after reading µ(ρ̃ · ρ3(1, |ρ̃ · ρ3| − 1)).

By the inductive hypothesis (over b, applied to the trace ρ̃ ·ρ3), there exists ρ′ ∈ TrcK such
that ρ̃·ρ3 ·ρ′ ∈ TrcK , |ρ′| = b−bb/2c, lst(ρ′) = s′, G′ is the subset of subformulas in Subf〈B〉(ψ

′)

41

that hold on some proper prefix of ρ̃ · ρ3 · ρ′, and D(Φ)′ is the current configuration of the
DFAs associated with the regular expressions in Φ, after reading µ(ρ̃ · ρ3 · ρ′(1, |ρ̃ · ρ3 · ρ′| − 1)).
The claim follows, as ρ3 · ρ′ ∈ TrcK and |ρ3 · ρ′| = b.

(⇐) Conversely, there exists ρ′ ∈ TrcK such that ρ̃ · ρ′ ∈ TrcK , |ρ′| = b ≥ 2, lst(ρ′) = s′,
G′ is the subset of subformulas in Subf〈B〉(ψ

′) that hold on some proper prefix of ρ̃ · ρ′,
and D(Φ)′ is the current configuration of the DFAs associated with the regular expressions
in Φ, after reading µ(ρ̃ · ρ′(1, |ρ̃ · ρ′| − 1)). Let us split ρ′ = ρ3 · ρ4, where |ρ3| = bb/2c
and |ρ4| = b − bb/2c. Let (G3,D(Φ)3, s3) ∈ Conf(K , ψ′) be such that D(Φ)3 is the cur-
rent configuration of the DFAs associated with the regular expressions in Φ, after read-
ing µ(ρ̃ · ρ3(1, |ρ̃ · ρ3| − 1)), s3 = lst(ρ3), G3 is the subset of subformulas in Subf〈B〉(ψ

′)
that hold on some proper prefix of ρ̃ · ρ3. By the inductive hypothesis (on b over ρ̃ · ρ3),
Reach(K , ψ′, (G3,D(Φ)3, s3), (G

′,D(Φ)′, s′), b − bb/2c) = >. Moreover, by the inductive
hypothesis (on b over ρ̃), we have Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G3,D(Φ)3, s3), bb/2c) = >.

Hence, both the recursive calls at line 6 return >, when at line 5 (G3,D(Φ)3, s3) is con-
sidered by the loop. Thus, Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′), b) returns > concluding
the proof of the claim.

(⇒) Let us now assume that in the execution of the procedure Check, at lines 15–
19, for some b′′ ∈ {1, . . . , |S| · (2|ψ′| + 1) · 22

∑u
`=1 |r`| − 1} and some (G′′,D(Φ)′′, s′′) ∈

Conf(K , ψ) (= Conf(K , ψ′)), we have Reach(K , ψ′, (G,D(Φ), s), (G′′,D(Φ)′′, s′′), b′′) = > and
Check(K , ψ′, s′′, G′′,D(Φ)′′) = >. By the claim above, there exists ρ′′ ∈ TrcK such that
ρ · ρ′′ ∈ TrcK , lst(ρ′′) = s′′, G′′ is the subset of subformulas in Subf〈B〉(ψ

′) that hold on some
proper prefix of ρ · ρ′′, and D(Φ)′′ is the current configuration of the DFAs associated with the
regular expressions of Φ, after reading µ(ρ · ρ′′(1, |ρ · ρ′′| − 1)). By the inductive hypothesis,
since Check(K , ψ′, s′′, G′′,D(Φ)′′) = >, we have K , ρ · ρ′′ |= ψ′ implying that K , ρ |= 〈B〉ψ′.

(⇐) Conversely, if K , ρ |= 〈B〉ψ′, we have K , ρ · ρ′′ |= ψ′ for some ρ′′ ∈ TrcK , with
ρ · ρ′′ ∈ TrcK . By the exponential small-model property (Theorem 37), there exists ρ′ ∈ TrcK

such that lst(ρ′′) = lst(ρ′), |ρ′| ≤ |S| · (2|ψ′| + 1) · 22
∑u
`=1 |r`| − 1 (recall that the factor

2 in front of |ψ′| is due to the fact that a formula in NNF is required), ρ · ρ′ ∈ TrcK

and K , ρ · ρ′ |= ψ′. Let G′ be the subset of subformulas in Subf〈B〉(ψ
′) = Subf〈B〉(ψ) that

hold on some proper prefix of ρ · ρ′, and D(Φ)′ be the current configuration of the DFAs
associated with the regular expressions in Φ, after reading µ(ρ · ρ′(1, |ρ · ρ′| − 1)). By the
inductive hypothesis (over ρ · ρ′), Check(K , ψ′, lst(ρ′), G′,D(Φ)′) = >. By the claim above,
Reach(K , ψ′, (G,D(Φ), s), (G′,D(Φ)′, lst(ρ′)), |ρ′|) = >, hence Check(K , ψ, s,G,D(Φ)) = >.
This concludes the proof of the theorem.

Algorithm 6 reports the main MC procedure CheckAux(K ,Φ) for BB. It starts constructing
the NFAs and the initial states of the DFAs for the regular expressions of Φ (line 1). Then,
CheckAux invokes the procedure Check two times (line 2): the former to check the special case
of the trace s0 consisting of only the initial state of K , and the latter for all right-extensions
of s0 (i.e., the initial traces having length at least 2). Notice that the NFAs and DFAs for the
regular expressions of 〈B〉 ¬Φ, ¬Φ and Φ are the same (i.e. D(Φ)0 = D(〈B〉 ¬Φ)0 = D(¬Φ)0)
allowing us to simultaneously apply the result of Theorem 40 for both the invocations of
Check at line 2, proving soundness and completeness of the procedure.

42

Algorithm 6 CheckAux(K ,Φ)
1: create(D(Φ)0) / Creates the (succinct) NFAs and the initial states of the DFAs for all the RE in Φ

2: if Check(K ,¬Φ, s0, ∅,D(Φ)0) or Check(K , 〈B〉 ¬Φ, s0, ∅,D(Φ)0) then
3: return ⊥
4: else
5: return >

Theorem 42. Let K = (AP , S,R, µ, s0) be a finite Kripke structure, and Φ be a BB formula.
Then, CheckAux(K ,Φ) = > ⇐⇒ K |= Φ.

Proof. If K |= Φ, then for all ρ ∈ TrcK with fst(ρ) = s0, we have K , ρ |= Φ. Hence, we have
K , s0 |= Φ, and K , s0 · ρ′ |= Φ for all s0 · ρ′ ∈ TrcK , implying that K , s0 |= [B]Φ and K , s0 6|=
〈B〉 ¬Φ. By Theorem 40, Check(K ,¬Φ, s0, ∅,D(Φ)0)=⊥ and Check(K ,〈B〉¬Φ, s0, ∅,D(Φ)0)=
⊥ implying that CheckAux(K ,Φ) = >. Conversely, if CheckAux(K ,Φ) = >, then it must
be Check(K ,¬Φ, s0, ∅,D(Φ)0) = ⊥ and Check(K , 〈B〉 ¬Φ, s0, ∅,D(Φ)0) = ⊥. By Theorem 40
applied to the trace ρ = s0, we have K , s0 6|= ¬Φ and K , s0 6|= 〈B〉 ¬Φ, and thus K |= Φ.

The following corollary states the upper bound to the complexity of MC for BB.

Corollary 43. The MC problem for BB formulas on finite Kripke structures is in PSPACE.

Proof. The procedure CheckAux decides the problem using polynomial working space basically
due to two facts. The first one is the number of simultaneously active recursive calls of
Check, which is O(|Φ|). The second is the space (in bits) used for any call of Check, that is,

O
(
|Φ|+ |S|+

u∑
`=1

|r`|+ log(|S| · |Φ| · 22
∑u
`=1 |r`|)︸ ︷︷ ︸

(1)

+

(|Φ|+ |S|+
u∑
`=1

|r`|)︸ ︷︷ ︸
(2)

· log(|S| · |Φ| · 22
∑u
`=1 |r`|)︸ ︷︷ ︸

(3)

)
,

In particular, (1) O(log(|S| · |Φ| · 22
∑u
`=1 |r`|)) bits are used for the bound b on the trace

length, (3) for each subformula 〈B〉ψ′ of Φ at most O(log(|S| · |Φ| · 22
∑u
`=1 |r`|)) recursive calls

of Reach may be simultaneously active (the recursion depth of Reach is logarithmic in b),
and (2) each call of Reach requires O(|Φ|+ |S|+

∑u
`=1 |r`|) bits.

Finally, since a Kripke structure can be unravelled against the direction of its edges, and
a language L is regular if and only if its reversed version LRev = {w(|w|) · · ·w(1) | w ∈ L}
is, the proposed algorithm can be easily modified to deal with the symmetric fragment EE
proving that also the MC problem for EE is in PSPACE.

43

6.3. PSPACE-completeness of MC for AABB

In this section, we show that the algorithm CheckAux can be used as a basic engine to
design a PSPACE MC algorithm for the bigger fragment AABB.

The idea is that, being the proposition letters related with regular expressions, the
modalities 〈A〉 and 〈A〉 do not augment the expressiveness of the fragment BB. In particular,
we will show that the occurrences of modalities 〈A〉 and 〈A〉 in an AABB formula can suitably
be “absorbed” and replaced by fresh proposition letters. We recall that K , ρ |= 〈A〉ψ if and
only if there exists a trace ρ̃ ∈ TrcK such that lst(ρ) = fst(ρ̃) and K , ρ̃ |= ψ. An immediate
consequence is that, for any ρ′ ∈ TrcK with lst(ρ) = lst(ρ′), K , ρ |= 〈A〉ψ ⇐⇒ K , ρ′ |= 〈A〉ψ
and similarly for the symmetrical modality 〈A〉 with respect to the first state of the trace. In
general, if two traces have the same final state (respectively, first state), either both of them
satisfy a formula 〈A〉ψ (respectively, 〈A〉ψ), or none of them does. As a consequence, for a
formula 〈A〉ψ (respectively, 〈A〉ψ), we can determine the subset S〈A〉ψ (respectively, S〈A〉ψ)
of the set of states S of the Kripke structure such that, for any ρ ∈ TrcK , K , ρ |= 〈A〉ψ
(respectively, K , ρ |= 〈A〉ψ) if and only if lst(ρ) ∈ S〈A〉ψ (respectively, fst(ρ) ∈ S〈A〉ψ).

Now, for a formula 〈A〉ψ (respectively, 〈A〉ψ), we provide a regular expression r〈A〉ψ
(respectively, r〈A〉ψ) characterizing the set of traces which model the formula. To this end we
identify states in S by a set of fresh proposition letters {qs | s ∈ S} and we replace the Kripke
structure K = (AP , S,R, µ, s0) by K ′ = (AP ′, S,R, µ′, s0), with AP ′ := AP ∪ {qs | s ∈ S} and
µ′(s) = {qs} ∪ µ(s) for any s ∈ S. The regular expressions r〈A〉ψ and r〈A〉ψ are

r〈A〉ψ := >∗ ·
(⋃
s∈S〈A〉ψ

qs

)
and r〈A〉ψ :=

(⋃
s∈S〈A〉ψ

qs

)
· >∗.

By definition K , ρ |=r〈A〉ψ if and only if lst(ρ)∈S〈A〉ψ, if and only if K , ρ |=〈A〉ψ.
We can now sketch the procedure for “reducing” the MC problem for AABB to the MC

problem for BB. We iteratively rewrite a formula Φ of AABB until it gets converted to an
(equivalent) formula of BB. At each step, we select an occurrence of a subformula of Φ, either
having the form 〈A〉ψ or 〈A〉ψ, devoid of any occurrence of modalities 〈A〉 and 〈A〉 in ψ.
For such an occurrence, say 〈A〉ψ, we have to compute the set S〈A〉ψ. For that purpose we
can run a variant CheckAux’(K ,Ψ, s) of the MC procedure CheckAux(K ,Ψ), which invokes
Check at line 2 on the additional parameter (state) s, instead of s0. For each s ∈ S, we
invoke CheckAux’(K ,¬ψ, s), deciding that s ∈ S〈A〉ψ if and only if the procedure returns
⊥. Then we replace 〈A〉ψ in Φ with (a fresh proposition letter associated with) the regular
expression r〈A〉ψ, obtaining a formula Φ′. To deal with subformulas of the form 〈A〉ψ, we
have to introduce a slight variant of the procedure Check, which finds traces leading to (and
not starting from) a given state. Now, if the resulting formula Φ′ is in BB, the rewriting
ends; otherwise, we can perform another rewriting step over Φ′.

Considering that the sets S〈A〉ψ, S〈A〉ψ′ and the regular expressions r〈A〉ψ and r〈A〉ψ have
a size linear in |S|, we can conclude with the following result.

Theorem 44. The MC problem for AABB over finite Kripke structures is in PSPACE.

44

By symmetry we can show that the MC problem for AAEE formulas is also in PSPACE.
The PSPACE-hardness of MC for BB and AABB directly follows from that of the smallest

fragment Prop (the purely propositional fragment of HS) which is stated by Theorem 45. As
a matter of fact, in Appendix A.4 we prove that Prop is hard for PSPACE by a reduction
from the PSPACE-complete universality problem for regular expressions [17] (the problem
of deciding, for a regular expression r with L(r) ⊆ Σ∗ and |Σ| ≥ 2, whether L(r) = Σ∗).

Theorem 45. The MC problem for Prop formulas over finite Kripke structures is PSPACE-
hard (under LOGSPACE reductions).

By Theorem 44 and Theorem 45 we obtain the following complexity result.

Theorem 46. The MC problem for formulas of any (proper or improper) sub-fragment of
AABB (and AAEE) over finite Kripke structures is PSPACE-complete.

7. Conclusions

In this paper, we have studied the MC problem for HS extended with regular expressions
used to define interval labelling. The approach, stemming from [25], generalizes both the one
of [29] that enforces the homogeneity principle and of [23, 24] where labeling is endpoint-based.
In the general case, MC problem for (full) HS turns out to be nonelementarily decidable—the
proof exploits an automata-theoretic approach based on the notion of K -NFA— but, for a
constant-length formula, it is in P. Moreover, the MC problem is EXPSPACE-hard (the
hardness follows from that of BE under homogeneity [6]).

Moreover, we have investigated the MC problem for two maximal fragments of HS,
namely AABBE and AAEBE with regular expressions, and we have showed that it isAEXPpol-
complete. The complexity upper bound has been proved by providing an alternating algorithm
which performs an exponential number of computation steps, but only polynomially many
alternations (in the length of the formula to be checked). Conversely, the lower bound has
been shown by a reduction from the AEXPpol-complete “alternating multi-tiling problem”.
In this way, we have also improved the known complexity result for the same fragments
under the homogeneity assumption.

Finally, we have proved that the HS fragments, AABB and AAEE and all their sub-
fragments are PSPACE-complete. In fact we have shown that AABB and AAEE enjoy a
suitable small-model property that allows us to check formulas of AABB/AAEE only against
traces having at most exponential length. Conversely, the matching complexity lower bound
has been proved by a reduction from the PSPACE-complete universality problem for regular
expressions.

Future work will focus on the problem of determining the exact complexity of MC for
full HS, both under homogeneity and in the regular expression-based semantics. In addition,
we will study MC for HS over visibly pushdown systems (VPS), that allow us to deal with
recursive programs and infinite state systems. Finally, we are thinking of inherently interval-
based models of systems : Kripke structures, being based on states, are naturally oriented to
the description of point-based properties of systems, and of how they evolve state-by-state.

45

We want to come up with suitable (and practical) description paradigms for systems, which
should enable us to directly model them on the basis of their interval behavior/properties.
Only after devising these models (something that seems to be extremely challenging!) a
really general interval-based MC will be possible.

References

[1] Allen, J. F., 1983. Maintaining knowledge about temporal intervals. Communications of the ACM 26(11),
832–843.

[2] Baier, C., Katoen, J., 2008. Principles of model checking. MIT Press.
[3] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., 2017. An in-depth investigation of interval temporal

logic model checking with regular expressions. In: SEFM. Vol. 10469 of LNCS. Springer, pp. 104–119.
[4] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., 2017. On the complexity of model checking for

syntactically maximal fragments of the interval temporal logic HS with regular expressions. In: GandALF.
Vol. 256 of EPTCS. pp. 31–45.

[5] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., 2017. On the complexity of model checking for
syntactically maximal fragments of the interval temporal logic HS with regular expressions. Tech. rep.,
University of Udine, Italy.
URL https://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/3.2017/

[6] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Interval Temporal Logic Model
Checking: the Border Between Good and Bad HS Fragments. In: IJCAR. Vol. 9706 of LNAI. Springer,
pp. 389–405.

[7] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Interval vs. Point Temporal Logic
Model Checking: an Expressiveness Comparison. In: FSTTCS. Vol. 65 of LIPIcs. Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik, pp. 26:1–14.

[8] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Model Checking the Logic of Allen’s
Relations Meets and Started-by is PNP-Complete. In: GandALF. Vol. 226 of EPTCS. pp. 76–90.

[9] Bozzelli, L., van Ditmarsch, H., Pinchinat, S., 2015. The complexity of one-agent refinement modal logic.
Theoretical Computer Science 603(C), 58–83.

[10] Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G., 2014. The dark side of interval
temporal logic: marking the undecidability border. Annals of Mathematics and Artificial Intelligence
71(1–3), 41–83.

[11] Bresolin, D., Goranko, V., Montanari, A., Sala, P., 2010. Tableau-based decision procedures for the
logics of subinterval structures over dense orderings. Journal of Logic and Computation 20(1), 133–166.

[12] Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G., 2009. Propositional interval neighborhood
logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic
161(3), 289–304.

[13] Chandra, A. K., Kozen, D. C., Stockmeyer, L. J., 1981. Alternation. Journal of the ACM 28(1), 114–133.
[14] Emerson, E. A., Halpern, J. Y., 1986. “Sometimes” and “not never” revisited: on branching versus linear

time temporal logic. Journal of the ACM 33(1), 151–178.
[15] Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S., 2000. Efficient algorithms for model checking

pushdown systems. In: CAV. Vol. 1855 of LNCS. Springer, pp. 232–247.
[16] Ferrante, J., Rackoff, C., 1975. A Decision Procedure for the First Order Theory of Real Addition with

Order. SIAM Journal of Computation 4(1), 69–76.
[17] Garey, M., Johnson, D., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman and Company.
[18] Giunchiglia, F., Traverso, P., 1999. Planning as model checking. In: ECP. Vol. 1809 of LNCS. Springer,

pp. 1–20.
[19] Gligoric, M., Majumdar, R., 2013. Model checking database applications. In: TACAS. Vol. 7795 of

LNCS. Springer, pp. 549–564.

46

https://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/3.2017/

[20] Halpern, J. Y., Shoham, Y., 1991. A propositional modal logic of time intervals. Journal of the ACM
38(4), 935–962.

[21] Kupferman, O., Piterman, N., Vardi, M. Y., 2009. From liveness to promptness. Formal Methods in
System Design 34(2), 83–103.

[22] Leucker, M., Sánchez, C., 2007. Regular linear temporal logic. In: ICTAC. Vol. 4711 of LNCS. Springer,
pp. 291–305.

[23] Lomuscio, A., Michaliszyn, J., 2013. An epistemic Halpern-Shoham logic. In: IJCAI. IJCAI/AAAI, pp.
1010–1016.

[24] Lomuscio, A., Michaliszyn, J., 2014. Decidability of model checking multi-agent systems against a class
of EHS specifications. In: ECAI. Vol. 263 of Frontiers in Artificial Intelligence and Applications. IOS
Press, pp. 543–548.

[25] Lomuscio, A., Michaliszyn, J., 2016. Model checking multi-agent systems against epistemic HS specifica-
tions with regular expressions. In: KR. AAAI Press, pp. 298–308.

[26] Lomuscio, A., Raimondi, F., 2006. MCMAS: A model checker for multi-agent systems. In: TACAS. Vol.
3920 of LNCS. Springer, pp. 450–454.

[27] Marcinkowski, J., Michaliszyn, J., 2014. The undecidability of the logic of subintervals. Fundamenta
Informaticae 131(2), 217–240.

[28] Mateescu, R., Monteiro, P. T., Dumas, E., de Jong, H., 2011. CTRL: Extension of CTL with regular
expressions and fairness operators to verify genetic regulatory networks. Theoretical Computer Science
412(26), 2854–2883.

[29] Molinari, A., Montanari, A., Murano, A., Perelli, G., Peron, A., 2016. Checking interval properties of
computations. Acta Informatica 53(6–8), 587–619.

[30] Molinari, A., Montanari, A., Peron, A., 2015. Complexity of ITL model checking: some well-behaved
fragments of the interval logic HS. In: TIME. IEEE, pp. 90–100.

[31] Molinari, A., Montanari, A., Peron, A., 2015. A model checking procedure for interval temporal logics
based on track representatives. In: CSL. Vol. 41 of LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum fuer
Informatik, pp. 193–210.

[32] Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Model Checking Well-Behaved Fragments of HS:
the (Almost) Final Picture. In: KR. AAAI Press, pp. 473–483.

[33] Montanari, A., 2016. Interval temporal logics model checking. In: TIME. IEEE, p. 2.
[34] Moszkowski, B., 1983. Reasoning about digital circuits. Ph.D. thesis, Stanford University, Stanford, CA.
[35] Pnueli, A., 1977. The temporal logic of programs. In: FOCS. IEEE, pp. 46–57.
[36] Roeper, P., 1980. Intervals and tenses. Journal of Philosophical Logic 9, 451–469.
[37] Schnoebelen, P., 2003. Oracle circuits for branching-time model checking. In: ICALP. Vol. 2719 of LNCS.

Springer, pp. 790–801.
[38] Venema, Y., 1990. Expressiveness and completeness of an interval tense logic. Notre Dame Journal of

Formal Logic 31(4), 529–547.

47

Appendix A. Proofs and complements

Appendix A.1. Completion of the proof of Proposition 7
Construction for the language 〈E〉K (L(A)). Let us consider the NFA A〈E〉 over S given by
A〈E〉 = (S, (M ∪ {q′0})× S, {q′0} × S, δ′, F), where q′0 /∈ M is a fresh main state and for all
(q, s) ∈ (M ∪ {q′0}) × S and s′ ∈ S, we have δ′((q, s), s′) = ∅, if s′ 6= s, and δ((q, s), s) is
defined as follows:

δ((q, s), s) =

{
δ((q, s), s) if q 6= q′0
({q′0} × R(s)) ∪ {(q0, s

′) ∈ Q0 | s′ ∈ R(s)} otherwise.

Starting from an initial state (q′0, s), the automaton A〈E〉 either remains in a state whose
main component is q′0, or moves to an initial state (q0, s

′) of A, ensuring at the same time
that the portion of the input read so far is faithful to the evolution of K . From the state
(q0, s

′), A〈E〉 simulates the behavior of A. Formally, since A is a K -NFA, by construction it
easily follows that A〈E〉 is a K -NFA which accepts the set of traces of K having a non-empty
proper suffix in L(A). Hence, L(A〈E〉) = 〈E〉K (L(A)).

Construction for the language 〈E〉K (L(A)). Let us consider the NFA A〈E〉 over S given by
A〈E〉 = (S, (M ∪ {qacc})× S,Q′0, δ′, {qacc}× S), where qacc /∈M is a fresh main state, and Q′0
and δ′ are defined as follows:

• the set Q′0 of initial states is the set of states (q, s) of A such that there is a run of A
from some initial state to (q, s) over some non-empty word.

• For all (q, s) ∈ (M ∪ {qacc})× S and s′ ∈ S, we have δ′((q, s), s′) = ∅, if s′ 6= s, and

δ′((q, s), s) =

 δ((q, s), s) ∪
⋃

(q′,s′)∈F∩δ((q,s),s)

{(qacc, s′)} if q ∈M

∅ if q = qacc.

Note that the set Q′0 can be computed in time polynomial in the size of A. Since A〈E〉
essentially simulates A, and A is a K -NFA, by construction we easily obtain that A〈E〉 is a
K -NFA which accepts the set of words over S which are non-empty proper suffixes of words
in L(A). Thus, since A is a K -NFA, we obtain that L(A〈E〉) = 〈E〉K (L(A)).

48

Appendix A.2. Pseudocode of checkFalse

Algorithm 7 checkFalse(K ,ϕ,Lab)(W) [W: well-formed set, Lab: AA-labeling for (K , ϕ)]

1: while W is not universal do
2: deterministically select (ψ, ρ) ∈ W such

that ψ does not have the form [E]ψ′ and
[B]ψ′

3: W ←W \ {(ψ, ρ)}
4: Case ψ = r with r ∈ RE
5: if ρ /∈ L(r) then
6: accept the input
7: case ψ = ¬r with r ∈ RE
8: if ρ ∈ L(r) then
9: accept the input
10: case ψ = 〈A〉ψ′ or ψ = [A]ψ′

11: if ψ /∈ Lab(lst(ρ)) then
12: accept the input
13: case ψ = 〈A〉ψ′ or ψ = [A]ψ′

14: if ψ /∈ Lab(fst(ρ)) then
15: accept the input
16: case ψ = ψ1 ∨ ψ2

17: universally choose i = 1, 2
18: W ←W ∪ {(ψi, ρ)}

19: case ψ = ψ1 ∧ ψ2

20: W ←W ∪ {(ψ1, ρ), (ψ2, ρ)}
21: case ψ = 〈B〉ψ′
22: universally choose ρ′ ∈ Pref(ρ)
23: W ←W ∪ {(ψ′, ρ′)}
24: case ψ = [B]ψ′

25: W ←W ∪ {(ψ′, ρ′) | ρ′ ∈ Pref(ρ)}
26: case ψ = 〈X〉ψ′ with X ∈ {E,B}
27: universally choose an X-witness ρ′ of

ρ for (K , ϕ)
28: W ←W ∪ {(ψ′, ρ′)}
29: EndCase
30: if W = ∅ then
31: reject the input
32: else
33: existentially choose (ψ, ρ) ∈ W̃
34: checkTrue(K ,ϕ,Lab)({(ψ, ρ)})

Appendix A.3. Proof of Proposition 26
For technical convenience, in order to prove Proposition 26, for an AABBE formula ϕ

we consider a slight variant Υw(ϕ) of Υ(ϕ). Formally, Υw(ϕ) is given by Υ(〈B〉ϕ) (or,
equivalently, by Υ(〈E〉ϕ)). Note that for each AABBE formula ϕ and X ∈ {E,B}, we have
Υw([X]ϕ) = Υw([̃X]ϕ) + 1.

Let K be a finite Kripke structure, ϕ be an AABBE formula in NNF, and W be a
well-formed set for (K , ϕ). We denote by Υw(W) the maximum over the alternation depths
Υw(ψ), where ψ is a formula occurring in W (we set Υw(W) = 0 if W = ∅). For each
non-empty universal well-formed set W for (K , ϕ), we have Υw(W̃) = Υw(W)− 1.

Now, we can prove Proposition 26.

Proposition (26). The ATM check is a singly exponential-time bounded ATM accepting
FMC whose number of alternations on input (K , ϕ) is at most Υ(ϕ) + 2.

Proof. Let us fix an input (K , ϕ), where ϕ is an AABBE formula in NNF.
Note that whenever there is a switch between the procedures checkTrue and checkFalse,

e.g., from checkTrue to checkFalse, (i) the input {(ψ, ρ)} of the called procedure is
contained in the dual W̃ of the currently processed well-formed set W for (K , ϕ), and (ii) W

49

is non-empty and universal: hence Υw({(ψ, ρ)}) < Υw(W). Moreover, a well-formed set W
for (K , ϕ) contains only formulas ψ such that ψ ∈ SD(ϕ).

Additionally, in each iteration of the while loops of procedures checkTrue and checkFalse,
the processed pair (ψ, ρ) in the current well-formed set W is either removed from W , or it is
replaced with pairs (ψ′, ρ′) such that ψ′ is a strict subformula of ψ. This ensures that the
algorithm always terminates.

Furthermore, since the number of alternations of the ATM check between existential
choices and universal choices is evidently the number of switches between the calls to
procedures checkTrue and checkFalse plus 2, and the top calls to checkTrue take as input
well-formed sets for (K , ϕ) having the form {(ψ, ρ)} where ψ ∈ SD(ϕ), we have proved the
following result.
Claim 47. The number of alternations of the ATM check on input (K , ϕ) is at most Υ(ϕ) + 2.

Next, we prove the following property.
Claim 48. The ATM check runs in time singly exponential in the size of the input.

Proof. Let us fix an input (K , ϕ). Let T (ϕ) be the standard tree encoding of ϕ, where each
node is labeled by some subformula of ϕ. Let ψ ∈ SD(ϕ). If ψ is a subformula of ϕ, we
define dψ as the maximum over the distances from the root in T (ϕ) of ψ-labeled nodes. If,
conversely, ψ is the dual of a subformula of ϕ, we let dψ := dψ̃.

Let us denote by H(K , ϕ) the length of a certificate for (K , ϕ). Recall that H(K , ϕ) =
(|S| ·2(2|spec|)2)h+2, where S is the set of states of K , spec is the set of atomic formulas (regular
expressions) occurring in ϕ, and h = dB(ϕ).

By Proposition 25, it follows that each step in an iteration of the while loops in the
procedures checkTrue and checkFalse can be performed in time singly exponential in the
size of (K , ϕ). Thus, in order to prove Claim 48, it suffices to show that for all computations
π of the ATM check starting from the input (K , ϕ), the overall number Nψ of iterations of
the while loops (of procedures checkTrue and checkFalse) along π, where the formula ψ is
processed, is at most (2|ϕ| ·H(K , ϕ))dψ .

The proof is done by induction on dψ. As for the base case, we have dψ = 0. Therefore,
ψ = ϕ or ψ = ϕ̃; by construction of the algorithm, Nϕ and Nϕ̃ are at most equal to 1. Thus,
the result holds.

As for the inductive step, let us assume that dψ > 0. We consider the case where ψ is a
subformula of ϕ (the case where ψ̃ is a subformula of ϕ is similar). Then, the result follows
from the following chain of inequalities, where P (ψ) denotes the set of nodes of T (ϕ) which
are parents of the nodes labeled by ψ, and for each node x, fo(x) denotes the formula labeling
x.

Nψ ≤
∑

x∈P (ψ)

Nfo(x) ·H(K , ϕ) ≤
∑

x∈P (ψ)

(2|ϕ| ·H(K , ϕ))dfo(x) ·H(K , ϕ) ≤
(
2|ϕ| ·H(K , ϕ)

)dψ
The first inequality directly follows from the construction of the algorithm (note that if
fo(x) = [B]ψ the processing of the subformula fo(x) in an iteration of the two while loops
generates at most H(K , ϕ) new “copies” of ψ). The second inequality follows by the inductive

50

hypothesis, and the last one from the fact that |P (ψ)| ≤ 2|ϕ| and dfo(x) ≤ dψ − 1 for all
x ∈ P (ψ). This concludes the proof of Claim 48.

It remains to show that the ATM check accepts FMC. Let us fix an input (K , ϕ) and let
Lab be the AA-labeling initially and existentially guessed by check (at line 1). Evidently,
after the top calls to checkTrue, each configuration of the procedure check can be described
by a tuple (`,Lab,W , f), where:

• W is a well-formed set for (K , ϕ),

• f = true if W is processed within checkTrue, and f = false otherwise, and

• ` is an instruction label corresponding to one of the instructions of the procedures
checkTrue and checkFalse.

We denote by `0 the label associated with the while instruction. A main configuration is a
configuration having label `0.

Let LabW be the restriction of Lab to the set of formulas in AA(ϕ) which are subformulas
of formulas occurring in W . In other words, for each state s, LabW(s) contains all and only
the formulas ψ ∈ Lab(s) such that either ψ or its dual ψ̃ is a subformula of some formula
occurring in W. LabW is said to be valid if for all states s and ψ ∈ LabW(s), it holds
K , s |= ψ.
Claim 49. Let W be a well-formed set for (K , ϕ) and let us assume that LabW is valid. Then:

1. the main configuration (`0,Lab,W , true) leads to acceptance if and only if W is valid;
2. the main configuration (`0,Lab,W , false) leads to acceptance if and only if W is not

valid.

Proof. We associate withW a natural number ‖W‖ defined as follows. Let us fix an ordering
ψ1, . . . , ψk of the formulas in SD(ϕ) such that, for all i 6= j, |ψi| > |ψj| implies i < j.

First, we associate with W a (k + 1)-tuple (n0, n1, . . . , nk) of natural numbers defined as:
the first component n0 in the tuple is the alternation depth Υw(W) and, for all the other
components ni, with 1 ≤ i ≤ k, ni is the number of elements of W associated with the
formula ψi (i.e., the number of elements having the form (ψi, ρ)).

Then, ‖W‖ is the position of the tuple (n0, n1, . . . , nk) along the total lexicographic
ordering over Nk+1. Note that if W is non-empty and universal, since Υw(W̃) < Υw(W), it
holds that ‖W̃‖ < ‖W‖. Moreover, ‖W‖ strictly decreases at each iteration of the while
loops in the procedures checkTrue and checkFalse (this is because at each iteration Υw(W)
does not increase, and an element of W is replaced with elements associated with smaller
formulas).

The proof of Claim 49 is now carried out by induction on ‖W‖. As for the base case we
have ‖W‖ = 0, thus W is empty and clearly valid. By construction checkTrue accepts the
empty set, while checkFalse rejects the empty set. The result holds.

As for the inductive step, let ‖W‖ > 0, hence W is not empty. First, assume that W is
universal. Recall that ‖W̃‖ < ‖W‖. Thus:

51

• (1.) W is valid ⇐⇒ for each (ψ, ρ) ∈ W̃, {(ψ, ρ)} is not valid ⇐⇒ (by the inductive
hypothesis) for each (ψ, ρ) ∈ W̃ , the main configuration (`0,Lab, {(ψ, ρ)}, false) leads
to acceptance ⇐⇒ (by construction of the algorithm and since W is universal) the
main configuration (`0,Lab,W , true) leads to acceptance.

• (2.) W is not valid ⇐⇒ for some (ψ, ρ) ∈ W̃ , {(ψ, ρ)} is valid ⇐⇒ (by the inductive
hypothesis) for some (ψ, ρ) ∈ W̃ , the main configuration (`0,Lab, {(ψ, ρ)}, true) leads
to acceptance ⇐⇒ (by construction of the algorithm and since W is universal) the
main configuration (`0,Lab,W , false) leads to acceptance.

Hence, (1.) and (2.) of Claim 49 hold if W is universal.
Now, let us assume that the non-empty set W is not universal. We consider (2.) of

Claim 49 (the proof of (1.) is just the “dual”). Let (ψ, ρ) ∈ W be the pair selected by
the procedure checkFalse in the iteration of the while loop associated with the main
configuration (`0,Lab,W , false). Here we examine the cases where either ψ = 〈A〉ψ′, or
ψ = [B]ψ′, or ψ = 〈X〉ψ′ with X ∈ {B,E} (the other cases are similar or simpler).

• ψ = 〈A〉ψ′. We have that {(〈A〉ψ′, ρ)} is valid if and only if K , lst(ρ) |= 〈A〉ψ′. By
hypothesis, LabW is valid. Hence {(〈A〉ψ′, ρ)} is not valid if and only if 〈A〉ψ′ /∈
LabW(lst(ρ)). Let W ′ = W \ {(ψ, ρ)}. Note that ‖W ′‖ < ‖W‖. Then W is not
valid ⇐⇒ either 〈A〉ψ′ /∈ LabW(lst(ρ)) or W ′ is not valid ⇐⇒ (by the inductive
hypothesis) either 〈A〉ψ′ /∈ LabW(lst(ρ)) or the main configuration (`0,Lab,W ′, false)
leads to acceptance ⇐⇒ (by construction of checkFalse) the main configuration
(`0,Lab,W , false) leads to acceptance.

• ψ = [B]ψ′. LetW ′ = (W\{(ψ, ρ)})∪{(ψ′, ρ′) | ρ′ ∈ Pref(ρ)}. Note that ‖W ′‖ < ‖W‖.
Then W is not valid ⇐⇒ W ′ is not valid ⇐⇒ (by the inductive hypothesis) the
main configuration (`0,Lab,W ′, false) leads to acceptance ⇐⇒ (by construction of
checkFalse) the main configuration (`0,Lab,W , false) leads to acceptance.

• ψ = 〈X〉ψ′ with X ∈ {B,E}. By Proposition 25(1), K , ρ |= 〈X〉ψ′ if and only if there
exists an X-witness ρ′ of ρ for (K , ϕ) such that K , ρ′ |= ψ′. Then (2.) of Claim 49
directly follows from the following chain of equivalences: W is not valid ⇐⇒ either
W \ {(ψ, ρ)} is not valid, or for each X-witness ρ′ of ρ for (K , ϕ), {(ψ′, ρ′)} is not
valid ⇐⇒ for each X-witness ρ′ of ρ for (K , ϕ), (W \ {(ψ, ρ)}) ∪ {(ψ′, ρ′)} is not valid
⇐⇒ (by the inductive hypothesis) for each X-witness ρ′ of ρ for (K , ϕ), the main
configuration (`0,Lab, (W \ {(ψ, ρ)}) ∪ {(ψ′, ρ′)}, false) leads to acceptance ⇐⇒ (by
construction of the procedure checkFalse) the main configuration (`0,Lab,W , false)
leads to acceptance.

This concludes the proof of Claim 49.

By exploiting Claim 49, we now prove the following result, which concludes the proof of
Proposition 26.
Claim 50. The ATM check accepts an input (K , ϕ) if and only if K |= ϕ.

52

Proof. Let us fix an input (K , ϕ) and an AA-labeling Lab for (K , ϕ). A Lab-guessing for
(K , ϕ) is a well-formed set W for (K , ϕ) which minimally satisfies the following conditions
for all states s of K :

• for all certificates ρ for (K , ϕ) with fst(ρ) = s0, (ϕ, ρ) ∈ W ;

• for all 〈A〉ψ ∈ Lab(s) (respectively, 〈A〉ψ ∈ Lab(s)), there is a certificate ρ for (K , ϕ)
with fst(ρ) = s (respectively, lst(ρ) = s) such that (ψ, ρ) ∈ W ;

• for all [A]ψ ∈ Lab(s) (respectively, [A]ψ ∈ Lab(s)) and for all certificates ρ for (K , ϕ)
with fst(ρ) = s (respectively, lst(ρ) = s), (ψ, ρ) ∈ W .

Evidently, by construction of the procedure check, for each input (K , ϕ), it holds that:

• (*) check accepts (K , ϕ) ⇐⇒ there exists an AA-labeling Lab and a Lab-guessing W
for (K , ϕ) such that, for all (ψ, ρ) ∈ W , the main configuration (`0,Lab, {(ψ, ρ)}, true)
leads to acceptance.

Let us fix an input (K , ϕ). First we assume that K |= ϕ. Let Lab be the valid AA-labeling
defined as follows for all states s: for all ψ ∈ AA(ϕ), ψ ∈ Lab(s) if and only if K , s |= ψ. By
Theorem 23, there exists a Lab-guessing W for (K , ϕ) such that for all (ψ, ρ) ∈ W , K , ρ |= ψ.
By Claim 49, for all (ψ, ρ) ∈ W, the main configuration (`0,Lab, {(ψ, ρ)}, true) leads to
acceptance. Hence, by (*), check accepts (K , ϕ).

For the converse direction, let us assume that check accepts (K , ϕ). By (*), there exists
an AA-labeling Lab and a Lab-guessing W for (K , ϕ) such that, for all (ψ, ρ) ∈ W , the main
configuration (`0,Lab, {(ψ, ρ)}, true) leads to acceptance. First we show that Lab is valid.

We fix a state s and a formula ψ ∈ Lab(s). We need to prove that K , s |= ψ. The
proof is by induction on the nesting depth dAA(ψ) of modalities 〈A〉, 〈A〉, [A], and [A] in ψ.
Assume that ψ = [A]ψ′ for some ψ′ (the other cases, where either ψ = 〈A〉ψ′, or ψ = 〈A〉ψ′
or ψ = [A]ψ′ are similar). By definition of Lab-guessing, for each certificate ρ for (K , ϕ)
with fst(ρ) = s, (ψ′, ρ) ∈ W. Moreover, by the inductive hypothesis, one can assume that
Lab{(ψ′,ρ)} is valid (note that for the base case, i.e., when ψ′ does not contain occurrences
of modalities 〈A〉, 〈A〉, [A], and [A], Lab{(ψ′,ρ)} is trivially valid). By hypothesis, the main
configuration (`0,Lab, {(ψ′, ρ)}, true) leads to acceptance. By Claim 49, for each certificate
ρ for (K , ϕ) with fst(ρ) = s, it holds K , ρ |= ψ′. Thus, by Theorem 23, we obtain that
K , s |= ψ. Hence Lab is valid.

Now, by definition of Lab-guessing, for each certificate ρ for (K , ϕ) with fst(ρ) = s0,
(ϕ, ρ) ∈ W. Thus, by hypothesis, by Claim 49, and by Theorem 23, we have K |= ϕ. This
concludes the proof of the claim.

Proposition 26 has been proved.

Appendix A.4. Proof of Theorem 45
Proof. Given a regular expression r with L(r) ⊆ Σ∗, let us define the finite Kripke structure
K = (Σ, {s0}∪Σ,R, µ, s0), where s0 6∈ Σ, µ(s0) = ∅, for c ∈ Σ, µ(c) = {c}, and R = {(s0, c) |

53

c ∈ Σ} ∪ {(c, c′) | c, c′ ∈ Σ}. It is easy to see that L(r) = Σ∗ ⇐⇒ K |= > · r, where r is a
RE over Σ, syntactically equal to r. Note that even though if r and r are syntactically equal,
r is a regular expression defining a finitary language over Σ, whereas r defines a finitary
language over 2Σ (see Section 2). The different notations r and r are kept to avoid confusion
between the two different semantics.

We show by induction on the structure of r that, for all w ∈ Σ∗, w ∈ L(r) ⇐⇒ K , w |= r.
The thesis follows as K , w |= r if and only if K , s0 · w |= > · r.
Case r = ε. We have w ∈ L(ε) if and only if w = ε, if and only if µ(w) ∈ L(ε) = {ε}, if and
only if K , w |= ε.
Case r = c ∈ Σ. We have w ∈ L(c) if and only if w = c, thus µ(w) = {c} ∈ L(c), and
K , w |= c. Conversely, if K , w |= c we have µ(w) ∈ L(c) = {A ∈ 2Σ | c ∈ A}. In particular
|w| = 1. Moreover, by definition of µ, µ(w) is a singleton, hence µ(w) = {c}. By definition
of K we get w = c, thus w ∈ L(c).
Case r = r1 · r2. We have w ∈ L(r1 · r2) if and only if w = w1 · w2, with w1 ∈ L(r1) and
w2 ∈ L(r2). By applying the inductive hypothesis, K , w1 |= r1 and K , w2 |= r2, thus µ(w1) ∈
L(r1) and µ(w2) ∈ L(r2). It follows that µ(w) = µ(w1) · µ(w2) ∈ L(r1) · L(r2) = L(r1 · r2),
namely K , w |= r1 · r2. Conversely, µ(w) ∈ L(r1 · r2) = L(r1) · L(r2). Hence µ(w1) ∈ L(r1)
and µ(w2) ∈ L(r2), for some w1 · w2 = w. By the inductive hypothesis, w1 ∈ L(r1) and
w2 ∈ L(r2), hence w ∈ L(r1 · r2).
Case r = r1 ∪ r2. We have w ∈ L(r1 ∪ r2) if and only if w ∈ L(ri) for some i = 1, 2. By the
inductive hypothesis this is true if and only if K , w |= ri, if and only if µ(w) ∈ L(ri), if and
only if µ(w) ∈ L(r1 ∪ r2), if and only if K , w |= r1 ∪ r2.
Case r = r∗1. The thesis trivially holds if w = ε. Let us now assume w 6= ε. We have
w ∈ L(r∗1) if and only if, for some t ≥ 1, w = w1 · · ·wt and w` ∈ L(r1) for all 1 ≤ ` ≤ t. By
the inductive hypothesis, K , w` |= r1, thus µ(w`) ∈ L(r1), and µ(w) ∈ L(r∗1). We conclude
that K , w |= r∗1. Conversely, µ(w) ∈ L(r∗1) = (L(r1))

∗, hence it must be the case that, for
some t ≥ 1, w = w1 · · ·wt and µ(w`) ∈ L(r1) for all 1 ≤ ` ≤ t. By the inductive hypothesis,
w` ∈ L(r1), hence w ∈ L(r∗1). Finally, by observing that K can be built by using logarithmic
working space, the thesis follows.

54

	Introduction
	Preliminaries
	Kripke structures, regular expressions, and finite automata
	The interval temporal logic HS

	The General Picture
	MC for Full HS
	The Fragments AABBE and AAEBE
	Exponential Small-Model Property for AABBE
	`39`42`"613A``45`47`"603AAEXPpol-membership of MC for AABBE
	`39`42`"613A``45`47`"603AAEXPpol-hardness of MC for BE

	The Fragments AABB and AAEE
	Exponential Small-Model Property for AABB and AAEE
	`39`42`"613A``45`47`"603APSPACE-membership of MC for BB
	`39`42`"613A``45`47`"603APSPACE-completeness of MC for AABB

	Conclusions
	Proofs and complements
	Completion of the proof of Proposition 7
	Pseudocode of checkFalse
	Proof of Proposition 26
	Proof of Theorem 45

